Skip to main content
Log in

Potential interactions between GABAb and cholinergic systems: baclofen augments scopolamine-induced performance deficits in the eight-arm radial maze

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Sixteen male Fischer-344N rats were trained on a eight-arm radial maze task for food reinforcement. The effects of various doses of baclofen (1.25 or 2.50 mg/kg) and scopolamine (0.188, 0.375, and 0.750 mg/kg) were determined alone and in combination. Relative to vehicle controls, baclofen alone did not affect performance in the radial arm maze (number correct in the first eight responses, total errors) or the time required to complete the maze. Scopolamine alone decreased the number of correct responses in the first eight arm choices, while increasing both the number of errors and the time necessary to complete the maze. When the two drugs were co-administered, baclofen had no effect on the number of errors or time required to complete the maze in the presence of scopolamine; however, in combination with the high dose of scopolamine, it significantly inreased the number of errors made during the first eight choices. Baclofen thus can exacerbate some radial arm maze dificits produced by an anticholinergic drug. In a subsequent experiment to test the interaction between scopolamine and baclofen using a nonlearned behavior, baclofen (1.25 and 2.5 mg/kg) did not affect motor activity, whereas all doses of scopolamine (0.188–0.75 mg/kg) increased activity. The higher dose of baclofen attenuated scopolamine-induced hypermotility by 50%, but the lower dose of baclofen was not effective. These data demonstrate pharmacological interactions between baclofen, a drug used clinically for spaticity, and a drug having anticholinergic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ault B, Nadler JV (1982) Baclofen selectively inhibits transmission at synapses made by axons of CA3 pyramidal cells in the hippocampal slice. J Pharmacol Exp Ther 223(2):291–297

    PubMed  CAS  Google Scholar 

  • Ault B, Nadler JV (1983a) Anticonvulsant-like actions of baclofen in the rat hippocampal slice. Br J Pharmacol 78:701–708

    PubMed  CAS  Google Scholar 

  • Ault B, Nadler JV (1983b) Effects of baclofen on synaptically induced cell firing in the rat hippocampal slice. Br J Pharmacol 80:211–219

    PubMed  CAS  Google Scholar 

  • Blaker WD, Cheney DL, Costa E (1986) GABAa versus GABAb modulation of septal hippocampal interconnections. In: Hanin I (ed) Dynamics of cholinergic function. Plenum Press, New York, pp. 953–961

    Google Scholar 

  • Blaxter TJ, Carlen PL (1985) Pre-and postsynaptic effects of baclofen in the rat hippocampal slice. Brain Res 341:195–199

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Doble A, Hill DR, Hudson AL, Shaw JS, Turnbull M (1979) Baclofen: a selective agonist for a novel type of GABA receptor. Br J Pharmacol 67:444–445P

    Google Scholar 

  • Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull MJ (1980) (-) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94

    Article  PubMed  CAS  Google Scholar 

  • Brogden RN, Speight TM, Avery GS (1974) Baclofen: a preliminary report of its pharmacological properties and therapeutic efficacy in spasticity. Drugs 9:1–14

    Google Scholar 

  • Collins GGS, Anson J, Kelly EP (1982) Baclofen: effects on evoked field potentials and amino acid neurotransmitter release in the rat olfactory cortex slice. Brain Res 238:371–383

    Article  PubMed  CAS  Google Scholar 

  • Desarmenien M, Feltz P, Occhipinti G, Santangelo F, Schlichter R (1984) Coexistence of GABAa and GABAb receptors on Aδ and C primary afferents. Br J Pharmacol 81:327–333

    PubMed  CAS  Google Scholar 

  • Eckerman DA, Gordon WA, Edwards JD, MacPhail RC, Gage MI (1979) Effects of scopolamine, pentobarbital, and amphetamine on radial arm maze performance in the rat. Pharmacol Biochem Behav 12:595–602

    Article  Google Scholar 

  • Faigle JW, Kederle H (1972) Chemistry and kinetics of Lioresal. Postgrad Med J (October Suppl):9–13

    Google Scholar 

  • Hill DR, Bowery NG, Hudson AL (1984) Inhibition of GABAb receptor binding by guanyl nucleotides. J Neurochem 42(3):652–657

    PubMed  CAS  Google Scholar 

  • Inoue M, Matsuo T, Ogata N (1985a) Baclofen activates voltagedependent and 4-aminopyridine sensitive K+ conduction in guinea pig hippocampal pyramidal cells maintained in vitro. Br J Pharmacol 84:883–841

    Google Scholar 

  • Inoue M, Matsuo T, Ogata N (1985b) Characterization of preand post-synaptic actions of (-)baclofen in the guinea pig hippocampus in vitro. Br J Pharmacol 84:843–851

    PubMed  CAS  Google Scholar 

  • Kato K, Goto M, Fukuda H (1982) Baclofen: inhibition of the release ofL-[3H]-aspartate from rat whole brain synaptosomes. Gen Pharmacol 13:445–447

    PubMed  CAS  Google Scholar 

  • Knutsson E, Lindblum V, Mariensson A (1973) Differences in effects in gamma and alpha spasticity induced by the GABA derivative baclofen (Lioresal). Brain 96:26–46

    Google Scholar 

  • Newberry NR, Nicoll RA (1984a) Direct hyperpolarizing action of baclofen in hippocampal pyramidal cells. Nature 308:450–452

    Article  PubMed  CAS  Google Scholar 

  • Newberry NR, Nicoll RA (1984b) A possible postsynaptic inhibitory action for GABAb receptor in hippocampal pyramidal cells. Neuropharmacology 23(78):849–850

    Google Scholar 

  • Newberry NR, Nicoll RA (1985) Comparison of the action of baclofen with γ-aminobutyric acid on rat hippocampal pyramidal cells in vitro. Physiology 360:161–185

    CAS  Google Scholar 

  • Olpe HR, Baudry M, Fagni L, Lynch G (1982) The blocking action of baclofen on excitatory transmission in the rat hippocampal slice. J Neurosci 2(6):698–703

    PubMed  CAS  Google Scholar 

  • Olton DS (1977) Spatial memory. Sci Am 236:82–98

    Article  PubMed  CAS  Google Scholar 

  • Pennock RD (1984) Hyperpolarizing action of baclofen on neurons in the rat substantia nigra slice. Brain Res 341:337–340

    Article  Google Scholar 

  • Peterson GM, Williams LR, Varon S, Gage FH (1987) Loss of GABAergic neurons in medial septum after fibria-fornix transection. Neurosci Lett 76:140–144

    Article  PubMed  CAS  Google Scholar 

  • Potashner SJ (1978) Baclofen: effects on amino acid release. Can J Physiol 56:150–154

    CAS  Google Scholar 

  • Potashner SJ, Lake N (1981) Action of baclofen on amino acid release. In: Chiara GD, Gessa GL (eds) Glutamate as a transmitter. Raven Press, New York, pp. 139–144

    Google Scholar 

  • Reiter L, MacPhail R (1979) Motor activity: a survey of methods with potential use in toxicity testing. Neurobehav Toxicol Teratol 1:53–66

    CAS  Google Scholar 

  • Sandyk R, Gilman MA (1985) Baclofen-induced memory impairment. Clin Neuropharmacol 8(B):294–295

    Article  Google Scholar 

  • Scott RH, Dolphin AC (1986) Regulation of calcium currents by a GTP-analogue: potentiation of (1)baclofen-mediated inhibition. Neurosci Lett 69:59–64

    Article  PubMed  CAS  Google Scholar 

  • Stevens DR, Gallagher JP, Gallagher PS (1985) Further studies on the action of baclofen on neurons of the dorsalateral septal nucleus of the rat, in vitro. Brain Res 385:360–363

    Article  Google Scholar 

  • Swartzwelder HS, Sutch CP, Wilson WA (1985) Baclofen attenuates local epileptiform activity in hippocampal area CA3. Epilepsia 26:524

    Google Scholar 

  • Swartzwelder HS, Bragdon AC, Sutch CP, Ault B, Wilson WA (1986a) Baclofen suppresses hippocampal epileptiform activity at low concentrations without suppressing synaptic transmission. J Pharmacol Exp Ther 237(3):881–887

    PubMed  CAS  Google Scholar 

  • Swartzwelder HS, Sutch CP, Wilson WA (1986b) Attenuation of epileptiform bursting by baclofen: reduced potency in elevated potassium. Exp Neurol 94:726–734

    Article  PubMed  CAS  Google Scholar 

  • Swartzwelder HS, Tilson HA, McLamb RL, Wilson WA (1987) Baclofen disrupts passive avoidance retention in rats. Psychopharmacology 92(3):394–401

    Article  Google Scholar 

  • Tilson HA, Rogers BC, Grimes L, Harry GJ, Peterson NJ, Hong JS, Dyer RS (1987) Time-dependent neurobiological effects of colchicine administered directly into the hippocampus of rats. Brain Res 408:163–172

    Article  PubMed  CAS  Google Scholar 

  • Walas I (1983) The hippocampus. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, pp. 337–358

    Google Scholar 

  • Watts J, Stevens R, Robinson C (1981) Effects of scopolamine on radial arm maze performance in rats. Physiol Behav 26:845–851

    Article  PubMed  CAS  Google Scholar 

  • Winer BJ (1971) Statistical Principles in experimental design. Mac-Graw-Hill, New York

    Google Scholar 

  • Worley PF, Baraban JM, McCarren M, Snyder SH, Alger BE (1987) Cholinergic phosphatidylinositol modulation of inhibitory. G protein-linked neurotransmitter actions: electrophysiological studies in rat hippocampus. Proc Natl Acad Sci USA 84:3467–3471

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidel, E.S., Tilson, H.A., McLamb, R.L. et al. Potential interactions between GABAb and cholinergic systems: baclofen augments scopolamine-induced performance deficits in the eight-arm radial maze. Psychopharmacology 96, 116–120 (1988). https://doi.org/10.1007/BF02431543

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431543

Key words

Navigation