Skip to main content
Log in

Evolution of antioxidant mechanisms: Thiol-Dependent peroxidases and thioltransferase among procaryotes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Glutathione peroxidase and glutathione S-transferase both utilize glutathione (GSH) to destroy organic hydroperoxides, and these enzymes are thought to serve an antioxidant function in mammalian cells by catalyzing the destruction of lipid hydroperoxides. Only two groups of procaryotes, the purple bacteria and the cyanobacteria, produce GSH, and we show in the present work that representatives from these two groups (Escherichia coli, Beneckea alginolytica, Rhodospirillum rubrum, Chromatium vinosum, andAnabaena sp. strain 7119) lack significant glutathione peroxidase and glutathione S-transferase activities. This finding, coupled with the general absence of polyunsaturated fatty acids in procaryotes, suggests that GSH-dependent peroxidases evolved in eucaryotes in response to the need to protect against polyunsaturated fatty acid oxidation. A second antioxidant function of GSH is mediated by glutathione thiol-transferase, which catalyzes the reduction of various cellular disulfides by GSH. Two of the five GSH-producing bacteria studied (E. coli andB. alginolytica) produced higher levels of glutathione thiol-transferase than found in rat liver, whereas the activity was absent in the other three species studied. The halobacteria produced γ-glutamylcysteine rather than GSH, and assays for γ-glutamylcysteine-dependent enzymes demonstrated an absence of peroxidase and S-transferase activities but the presence of significant thioltransferase activity. Based upon these results it appears that GSH and γ-glutamylcysteine do not function in bactera as antioxidants directed against organic hydroperoxides but do play a significant, although not universal, role in main-taining disulfides in a reduced state. The function of GSH in the photosynthetic bacteria, aside from providing a form of cysteine resistant toward autoxidation, remains a puzzle, as none of the GSH-dependent enzymes tested other than glutathione reductase were present in these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnon DI, Das VSR, Anderson JD (1963) Metabolism of photosynthetic bacteria. I. Effect of carbon source and hydrogen gas on biosynthetic patterns ofChromatium. In: Japanese Society of Plant Physiologists (eds) Studies on microalgae and photosynthetic bacteria. University of Tokyo Press, Tokyo, pp 529–545

    Google Scholar 

  • Arnon DI, McSwain BD, Tsujimoto HY, Wada K (1974) Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Biochim Biophys Acta 357:231–245

    Article  PubMed  CAS  Google Scholar 

  • Axelsson K, Eriksson S, Mannervik B (1978) Purification and characterization of cytoplasmic thioltransferase (glutathione: disulfide oxidoreductase) from rat liver. Biochemistry 17:2978–2984

    Article  PubMed  CAS  Google Scholar 

  • Boll M (1969) Glutathione reductase fromRhodospirillum rubrum. Arch Mikrobiol 66:374–388

    Article  PubMed  CAS  Google Scholar 

  • Chung YC, Hurlbert RE (1975) Purification and properties of the glutathione reductase ofChromatium vinosum. J Bacteriol 123:203–211

    PubMed  CAS  Google Scholar 

  • De Rosa M, Gambacorta A, Gliozzi A (1986) Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev 50:70–80

    PubMed  Google Scholar 

  • Eriksson S, Askelöf P, Axelsson K, Carlberg I, Guthenberg C, Mannervik B (1974) Resolution of glutathione-linked enzymes in rat liver and evaluation of their contribution to disulfide reduction via thiol-disulfide interchange. Acta Chem Scand, Ser B 28:922–930

    Article  CAS  Google Scholar 

  • Fahey RC, Newton GL (1983) Occurrence of low molecular weight thiols in biological systems. In: Larsson A, Orrenius S, Holmgren A, Mannervik B (eds) Functions of glutathione: biochemical, physiological, toxicological, and clinical aspects. Raven Press, New York, pp 251–260

    Google Scholar 

  • Fahey RC, Newton GL, Arrick B, Overdank-Bogart T, Aley SB (1984)Entamoeba histolytica: a eukaryote without glutathione metabolism. Science 224:70–72

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC, Buschbacher RM, Newton GL (1987) The evolution of glutathione metabolism in phototrophic microorganisms. J Mol Evol 25:81–88

    Article  PubMed  CAS  Google Scholar 

  • Flohé L (1982) Glutathione peroxidase brought into focus. In: Pryor WA (ed) Free radicals in biol, vol V. Academic Press, New York, pp 223–254

    Google Scholar 

  • Gan ZR, Wells WW (1987) Preparation of homogeneous pig liver thioltransferase by a thiol: disulfide mediatedpI shift. Anal Biochem 162:265–273

    Article  PubMed  CAS  Google Scholar 

  • Gleason FK, Holmgren A (1981) Isolation and characterization of thioredoxin from the cyanobacterium,Anabaena sp. J Biol Chem 256:8306–8309

    PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Holmgren A (1979a) Glutathione-dependent synthesis of deoxyribonucleotides: purification and characterization of glutaredoxin fromEscherichia coli. J Biol Chem 254:3664–3671

    PubMed  CAS  Google Scholar 

  • Holmgren A (1979b) Reduction of disulfides by thioredoxin: exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J Biol Chem 254:9113–9119

    PubMed  CAS  Google Scholar 

  • Holmgren A (1985) Glutaredoxin fromEscherichia coli and calf thymus. Methods Enzymol 113:525–540

    PubMed  CAS  Google Scholar 

  • Horecker BL, Kornberg A (1984) The extinction coefficients of the reduced band of pyridine nucleotides. J Biol Chem 175: 385–390

    Google Scholar 

  • Jakoby WB, Habig WH (1980) Glutathione transferases. In: Jakoby WB (ed) Enzymatic basis of detoxication, vol II. Academic Press, New York, pp 63–94

    Google Scholar 

  • Johnson TC, Crawford NA, Buchanan BB (1984) Thioredoxin system of the photosynthetic anaerobeChromatium vinosum. J Bacteriol 158:1061–1069

    PubMed  CAS  Google Scholar 

  • Johnson TC, Yee BC, Carlson DE, Buchanan BB, Johnson RS, Mathews WR, Biemann K (1988) Thioredoxin fromRhodospirillum rubrum: primary structure and relation to thioredoxin from other photosynthetic bacteria. J Bacteriol 170: 2406–2408

    PubMed  CAS  Google Scholar 

  • Larson K, Eriksson V, Mannervik B (1985) Thioltgransferase from human placenta. Methods Enzymol 113:520–524

    PubMed  CAS  Google Scholar 

  • Lau EP, Niswander L, Watson D, Fall RR (1980) Glutathione-S-transferase is present in a variety of microorganisms. Chemosphere 9:565–569

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mannervik B (1980) Thioltransferases. In: Jakoby WB (ed) Enzymatic basis of detoxication, vol II. Academic Press, New York, pp 229–244

    Google Scholar 

  • Mannervik B (1985a) The isoenzymes of glutathione transferase. Adv Enzymol 57:357–417

    PubMed  CAS  Google Scholar 

  • Mannervik B (1985b) Glutathione peroxidase. Methods Enzymol 113:490–495

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, pp 122, 178

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution, WH Freeman, San Francisco

    Google Scholar 

  • Mata AM, Pinto MC (1984) Purification by affinity chromatography of glutathione reductase (EC 1.6.4.2) fromEscherichia coli and characterization of such enzyme. Z Naturforsch 39c:908–915

    CAS  Google Scholar 

  • Meijer J, DePierre JW, Rannug U (1980) Measurement of drugmetabolizing systems inSalmonella typhimurium strains G46, TA1538, TA100, and TA98. Chem-Biol Interact 31:247–254

    Article  PubMed  CAS  Google Scholar 

  • Mevarech M, Leicht W, Werber MM (1976) Hydrophobic chromatography and fractionation of enzymes from extremely halophilic bacteria usiong decreasing concentration gradients of ammonium sulfate. Biochemistry 15:2382–2387

    Article  Google Scholar 

  • Moron MS, DePierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathioneS-transferase in rat lung and liver. Biochim Biophys Acta 582:67–78

    PubMed  CAS  Google Scholar 

  • Nadler V, Goldberg I, Hochman A (1985) Comparative study of bacterial catalases. Biochim Biophys Acta 882:234–241

    Google Scholar 

  • Nagai S, Black S (1968) A thiol-disulfide transhydrogenase from yeast. J Biol Chem 243:1942–1947

    PubMed  CAS  Google Scholar 

  • Nakamura W, Hosoda S, Hayashi K (1974) Purification and properties of rat liver glutathione peroxidase. Biochim Biophys Acta 358:251–261

    CAS  Google Scholar 

  • Newton GL, Fahey RC (1989) Glutathione in porocaryotes. In: Viña J (ed) Handbook of glutathione: metabolism and physiological functions, CRC Press, Boca Raton (in press)

    Google Scholar 

  • Newton GL, Javor B (1985) γ-glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria. J Bacteriol 161:438–441

    PubMed  CAS  Google Scholar 

  • Ormerod JG, Ormerod KS, Gest H (1961) Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys 94:449–463

    Article  PubMed  CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  • Segel IH, Johnson MJ (1963) Synthesis and characterization of sodium cysteine-S-sulfate monohydrate. Anal Biochem 5:330–337

    Article  PubMed  CAS  Google Scholar 

  • Serrano A, Rivas J, Losada M (1984) Purification and properties of glutathione reductase from the cyanobacteriumAnabaena sp. strain 7119. J Bacteriol 158:317–324

    PubMed  CAS  Google Scholar 

  • Setlow B, Setlow P (1977) Levels of acetyl coenzyme A, reduced and oxidized coenzyme A, and coenzyme A in disulfide linkage to protein in dormant and germinated spores and growing and sporulating cells ofBacillus megaterium. J Bacteriol 132: 444–452

    PubMed  CAS  Google Scholar 

  • Shishido T (1981) Glutathione S-transferase fromEscherichia coli. Agric Biol Chem 45:2951–2953

    CAS  Google Scholar 

  • Smith J, Shrift A (1978) Phylogenetic distribution of glutathione peroxidase. Comp Biochem Physiol 63B:39–44

    Google Scholar 

  • Summer KH, Göggelmann W, Greim H (1980) Glutathione and glutathione S-transferase in the salmonella mammalian-microsome mutagenicity test. Mutat Res 70:269–278

    PubMed  CAS  Google Scholar 

  • Sundquist AR, Fahey RC (1988) The novel disulfide reductase bis-γ-glutamylcystine reductase and dihydrolipoamide dehydrogenase fromHalobacterium halobium: purification by immobilized-metal-ion affinity chromatography and properties of the enzymes. J Bacteriol 170:3459–3467

    PubMed  CAS  Google Scholar 

  • Sundquist AR, Fahey RC (1989) The function of γ-glutamyl-cysteine and bis-γ-glutamylcystine reductase inHalobacterium halobium. J Biol Chem 264:719–725

    PubMed  CAS  Google Scholar 

  • Swerdlow RD, Setlow P (1983) Purification and characterization of aBacillus megaterium disulfide reductase specific for disulfides containing pantethine 4′,4″-diphosphate. J Bacteriol 153:475–484

    PubMed  CAS  Google Scholar 

  • Tel-Or E, Huflejt ME, Packer L (1986) Hydroperoxide metabolism in cyanobacteria. Arch Biochem Biophys 246:396–402

    Article  PubMed  CAS  Google Scholar 

  • Villanueva E, Luehrsen KR, Gibson J, Delihas N, Fox GE (1985) Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences. J Mol Evol 22:46–52

    Article  PubMed  CAS  Google Scholar 

  • Williams CH (1976) Flavin-containing dehydrogenases. In: Boyer PD (ed) The enzymes, ed 3, vol XIII. Academic Press, New York, pp 39–44

    Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundquist, A.R., Fahey, R.C. Evolution of antioxidant mechanisms: Thiol-Dependent peroxidases and thioltransferase among procaryotes. J Mol Evol 29, 429–435 (1989). https://doi.org/10.1007/BF02602913

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602913

Key words

Navigation