Skip to main content
Log in

Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans

Biological implications in neovascularization

  • Review
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

Basic fibroblast growth factor is an angiogenic molecule involved in several physiological and pathological processes, including wound repair, embryonic development, and tumor growth. In vitro, basic fibroblast growth factor induces an “angiogenic phenotype” in endothelial cells, which includes chemotaxis, mitogenesis, protease production, β-integrin expression, and tube formation in three-dimensional gels. It acts by binding to specific tryosine kinase receptors and to cell-associated heparan sulfate proteoglycans. The physiological significance of the interaction with cell-associated and soluble heparan sulfate proteoglycans is manyfold. Heparan sulfate proteoglycans protect basic fibroblast growth factor from inactivation in the extracellular environment and modulate its bioavailability. At the cell surface, soluble and cell-associated heparan sulfate proteoglycans may play different roles in modulating the dimerization of the growth factor and its interaction with tyrosine kinase receptors. Finally, they affect the internalization and the intracellular fate of basic fibroblast growth factor, suggesting that growth factor slash proteoglycan complexes are involved in intracellular delivery. The bioavailability and the biological activity of basic fibroblast growth factor on endothelial cells strictly depend on the glycosaminoglycan milieu of the extracellular environment. Hence the angiogenic activity of the growth factor in vivo might be modulated by using exogenous glycosaminoglycans. The capacity of glycosaminoglycans to bind to and to influence the biological activity of basic fibroblast growth factor depends on size, degree of sulfation, and disaccharide composition. In the present paper we discuss the physiological significance and the biochemical bases of the interaction of the growth factor with heparan sulfate proteoglycans and exogenous glycosaminoglycans with a view to the possible therapeutic use of heparin-related oligosaccharides as basic fibroblast growth factor agonists or antagonists in angiogenesis-dependent diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Klagsburn M, D'Amore PA. Regulators of angiogenesis. Annu Rev Physiol 1991; 53: 217.

    Article  Google Scholar 

  2. Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res 1992; 59: 115.

    PubMed  CAS  Google Scholar 

  3. Florkiewicz RZ, Sommer A. Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci USA 1989; 86: 3978

    Article  PubMed  CAS  Google Scholar 

  4. Gualandris A, Urbinati C, Rusnati M, Ziche M, Presta M. Interaction of high molecular weight basic fibroblast growth factor (bFGF) with endothelium: biological activity and intracellular fate of human recombinant Mr 24,000 bFGF. J Cell Physiol 1994; 161: 149.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson DE, Williams LT. Structural and functional diversity of the FGF receptor multigene family. Adv Cancer Res 1993; 60: 1.

    Article  PubMed  CAS  Google Scholar 

  6. Lindahl U, Lindholt K, Spillmann D, Kjellen L. More to “heparin” than anticoagulation. Thromb Res 1994; 75: 1.

    Article  PubMed  CAS  Google Scholar 

  7. Gallagher JT. The extended family of proteoglycans: social resident of the pericellular zone. Curr Opin Cell Biol 1989; 1: 1201.

    Article  PubMed  CAS  Google Scholar 

  8. Kjellen L, Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem 1991; 60: 443.

    Article  PubMed  CAS  Google Scholar 

  9. Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 1992; 8: 365.

    Article  PubMed  CAS  Google Scholar 

  10. Hardingham TE, Fosang AJ. Proteoglycans: many forms and many functions. FASEB J 1992; 6: 861.

    PubMed  CAS  Google Scholar 

  11. Witt DP, Lander AD. Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol 1994; 4: 394.

    Article  PubMed  CAS  Google Scholar 

  12. Bernfield M, Sanderson RD. Syndecan, a developmentally regulated cell surface proteoglycan that binds extracellular matrix and growth factors. Philos Trans R Soc Lond [Biol] 1990; B 327: 171.

    Google Scholar 

  13. Andres JL, DeFalcis D, Noda N, Massague J. Binding of two growth factor families to separate domains of the proteoglycan betaglycan. J. Biol Chem 1992: 267: 5927.

    PubMed  CAS  Google Scholar 

  14. Elenius K, Maata A, Salmivirta M, Jalkanen M. Growth factors induce 3T3 cells to express bFGF-binding syndecan. J Biol Chem 1992; 267: 6435.

    PubMed  CAS  Google Scholar 

  15. Chernousov MA, Carey DJ.N-Syndecan (syndecan-3) from neonatal rat brain binds basic fibroblast growth factor. J Biol Chem 1993; 268: 16810.

    PubMed  CAS  Google Scholar 

  16. Aviezer D, Hecht D, Safran M, Elsinger M, David G, Yayon A. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 1994; 79: 1005.

    Article  PubMed  CAS  Google Scholar 

  17. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface heparin-like molecules. J Biol Chem 1992; 267: 6093.

    PubMed  CAS  Google Scholar 

  18. Lyon M, Gallagher JT. Hepatocyte growth factor/scatter factor: a heparan sulphate-binding pleiotrophic growth factor. Biochem Soc Trans 1994; 22: 365.

    PubMed  CAS  Google Scholar 

  19. Albini A, Benelli R, Presta M, Rusnati M, Ziche M, Rubartelli A, Paglialunga G, Bussolino F, Noonan D. HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene. In press.

  20. Folkman J. Regulation of angiogenesis: a new function of heparin. Biochem Pharmacol 1985; 34: 905.

    Article  PubMed  CAS  Google Scholar 

  21. Crum R, Szabo S, Folkman J. A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 1985; 230: 1375.

    Article  PubMed  CAS  Google Scholar 

  22. Auerbach W, Auerbach R. Angiogenesis inhibition: a review. Pharmacol Ther 1994; 63: 265.

    Article  PubMed  CAS  Google Scholar 

  23. Kessler DA, Langer RS, Pless NA, Folkman J. Mast cells and tumor angiogenesis. Int J Cancer 1976; 18: 703.

    Article  PubMed  CAS  Google Scholar 

  24. Azizkhan RG, Azizkhan JC, Zetter BR, Folkman J. Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J Exp Med 1980; 152: 931.

    Article  PubMed  CAS  Google Scholar 

  25. Nakajima M, Irimura T, DiFerrante DT, DiFerrante N, Nicolson G. Rates of heparin sulfate degradation correlate with invasive and metastatic activities of B 16 melanoma sublines. J Cell Biol 1981; 91: 119a.

    Google Scholar 

  26. Baird A, Ling N. Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochem Biophys Res Commun 1987; 142: 428.

    Article  PubMed  CAS  Google Scholar 

  27. Saksela O, Moscatelli D, Sommer A, Rifkin DB. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 1988; 107: 743.

    Article  PubMed  CAS  Google Scholar 

  28. Sommer A, Rifkin DB. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J Cell Physiol 1989; 138: 215.

    Article  PubMed  CAS  Google Scholar 

  29. Coltrini D, Rusnati M, Zoppetti G, Oreste P, Isacchi A, Caccia P, Bergonzoni L, Presta M. Biochemical bases of the interaction of human fibroblast growth factor with glycosaminoglycans. New insights from trypsin digestion. Eur J Biochem 1993; 214: 51.

    Article  PubMed  CAS  Google Scholar 

  30. Rusnati M, Coltrini D, Oreste P, Zoppetti G, Presta M. The interaction of basic fibroblast growth factor (bFGF) with heparan sulfate proteoglycans: biochemical bases and biological implications. In: Harenberg J, Casu B, eds. Non anticoagulant actions of glycosaminoglycans: protein binding studies. New York: Plenum. In press.

  31. Maccarana M, Casu B, Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 1993; 268: 23898.

    PubMed  CAS  Google Scholar 

  32. Coltrini D, Rusnati M, Zoppetti G, Oreste P, Grazioli G, Naggi A, Presta M. Different effects of mucosal, bovine lung and chemically modified heparin on selected biological properties of basic fibroblast growth factor. Biochem J 1994; 303: 583.

    PubMed  CAS  Google Scholar 

  33. Ishihara M, Shaklee PN, Yang Z, Liang W, Wei Z, Stack RJ, Holme K. Structural features in heparin which modulate specific biological activities mediated by basic fibroblast growth factor. Glycobiology 1994; 4: 451.

    Article  PubMed  CAS  Google Scholar 

  34. Ornitz DM, Herr AB, Nilsson M, Westman J, Svahn C. Waksman G. FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides. Science 1995; 268: 432.

    Article  PubMed  CAS  Google Scholar 

  35. Baird A, Schubert D, Ling N, Guillemin R. Receptor- and heparin-binding domains ofbasic fibroblast growth factor. Proc Natl Acad Sci USA 1988; 85: 2324.

    Article  PubMed  CAS  Google Scholar 

  36. Seno M, Sasada R, Kurokawa T, Igarashi K. Carboxyl-terminal structure of basic fibroblast growth factor significantly contributes to its affinity for heparin. Eur J Biochem 1990; 188: 239.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang J, Cousens LS, Barr PJ, Sprang SR. Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1β. Proc Natl Acad Sci USA 1991; 88: 3446.

    Article  PubMed  CAS  Google Scholar 

  38. Zhu X, Komiya H, Chirino A, Faham S, Fox GM, Arakawa T, Hsu BT, Rees DC. Three-dimensional structures of acid and basic fibroblast growth factors. Science 1990; 251: 90.

    Article  Google Scholar 

  39. Eriksson AE, Cousens LS, Weaver LH, Matthews BW. Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci USA 1991; 88: 3441.

    Article  PubMed  CAS  Google Scholar 

  40. Isacchi A, Statuto M, Chiesa R, Bergonzoni L, Rusnati M, Sarmientos P, Ragnotti G, Presta M. A six-amino acid deletion in basic fibroblast growth dissociates its mitogenic activity from its plasminogen activator-inducing capacity. Proc Natl Acad Sci USA 1991; 88: 2628.

    Article  PubMed  CAS  Google Scholar 

  41. Presta M, Statuto M, Isacchi A, Caccia P, Pozzi A, Gualandris A, Rusnati M, Bergonzoni L, Sarmientos P. Structure-function relationship of basic fibroblast growth factor: site-directed mutagenesis of a putative heparin-binding and receptor-binding region, Biochem Biophys Res Commun 1992; 185: 1098.

    Article  PubMed  CAS  Google Scholar 

  42. Presta M, Gualandris A, Urbinati C, Rusnati M, Coltrini D, Isacchi A, Caccia P, Bergonzoni L. Subcellular localization and biological activity of Mr 18,000 basic fibroblast growth factor: site-directed mutagenesis of a putative nuclear translocation sequence. Growth Factors 1993; 9: 269.

    Article  PubMed  CAS  Google Scholar 

  43. Li L, Safran M, Aviezer D, Bohlen P, Seddon AP, Yayon A. Diminished heparin binding of a basic fibroblast growth factor mutant is associated with reduced receptor binding, mitogenesis, plasminogen activator induction, and in vitro angiogenesis. Biochemistry 1994; 33: 10999.

    Article  PubMed  CAS  Google Scholar 

  44. Thompson LD, Pantoliano MW, Springer BA. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry 1994; 33: 3831.

    Article  PubMed  CAS  Google Scholar 

  45. Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol 1987; 131: 123.

    Article  PubMed  CAS  Google Scholar 

  46. Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 1987; 84: 2292.

    Article  PubMed  CAS  Google Scholar 

  47. Rogelj S, Klagsbrun M, Atzmon R, Kurokawa M, Haimovitz A, Fuks Z, Vlodavsky I. Basic fibroblast growth factor is an extra-cellular matrix component required for supporting the prolife-ration of vascular endothelial cells and the differentiation of PC12 cells. J Cell Biol 1989; 109: 823.

    Article  PubMed  CAS  Google Scholar 

  48. Folkman J, Klagsbrun M, Sasse J, Wadzinsky M, Ingber D, Vlodavsky I. A heparin-binding angiogenic protein-basic fibroblast growth factor is stored within basement membrane. Am J Pathol 1988; 130: 393.

    PubMed  CAS  Google Scholar 

  49. DiMario J, Buffinger N, Yamada S, Strohman RC. Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science 1989; 244: 688.

    Article  PubMed  CAS  Google Scholar 

  50. Hageman GS, Kirchoff-Rempe MA, Lewis GP, Fisher SK, Anderson DH. Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix. Proc Natl Acad Sci USA 1991; 88: 6706.

    Article  PubMed  CAS  Google Scholar 

  51. Flaumenhaft R, Moscatelli D, Saksela O, Rifkin DB. Role of extracellular matrix in the action of basic fibroblast growth factor: matrix as a source of growth factor for long-term stimulation of plasminogen activator production and DNA synthesis. J Cell Physiol 1989; 140: 75.

    Article  PubMed  CAS  Google Scholar 

  52. Presta M, Maier JAM, Rusnati M, Ragnotti G. Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol 1989; 140: 68.

    Article  PubMed  CAS  Google Scholar 

  53. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 1989; 28: 1737.

    Article  PubMed  CAS  Google Scholar 

  54. Gospodarowicz D, Cheng J. Heparin protects basic and acidic FGF from inactivation. J Cell Physiol 1986; 128: 175.

    Article  Google Scholar 

  55. Flaumenhaft R, Moscatelli D, Rifkin DB. Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J Cell Biol 1990; 11: 1651.

    Article  Google Scholar 

  56. Saksela O, Rifkin DB. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 1990; 110: 767.

    Article  PubMed  CAS  Google Scholar 

  57. Brunner G, Gabrilove J, Rifkin DB, Wilson EL. Phospholipase C release of basic fibroblast growth factor from human bone marrow cultures as a biologically active complex with a phosphatidylinositol-anchored heparan sulfate proteoglycan. J Cell Biol 1991; 114: 1275.

    Article  PubMed  CAS  Google Scholar 

  58. Ingber D, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 1980; 109: 317.

    Article  Google Scholar 

  59. Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, Bashkin P, Fuks Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci 1991; 16: 268.

    Article  PubMed  CAS  Google Scholar 

  60. Rapraeger AC, Krufka A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991; 252: 1705.

    Article  PubMed  CAS  Google Scholar 

  61. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841.

    Article  PubMed  CAS  Google Scholar 

  62. Roghani M, Mansukhani A, Dell'Era P, Bellosta P, Basilico C, Rifkin DB, Moscatelli D. Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J Biol Chem 1994; 269: 3927.

    Google Scholar 

  63. Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi E, Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a free receptor and for mitogenesis in whole cells. Mol Cell Biol 1992; 12: 240.

    PubMed  CAS  Google Scholar 

  64. Rusnati M, Coltrini D, Caccia P, Dell'Era P, Zoppetti G, Oreste P, Valsasina B, Presta M. Distinct role of 2-O-, N-, and 6-O-sulfate groups of heparin in the formation of the ternary complex with basic fibroblast growth factor and soluble FGF receptor-1. Biochem Biophys Res Commun 1994; 203: 450.

    Article  PubMed  CAS  Google Scholar 

  65. Guimond S, Maccarana M, Olwin BB, Lindahl U, Rapraeger AC. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). J Biol Chem 1993; 268: 23906.

    PubMed  CAS  Google Scholar 

  66. Turnbull JE, Gallagher JT. Heparan sulfate: functional role as modulator of fibroblast growth factor activity. Biochem Soc Trans 1993; 21: 477.

    PubMed  CAS  Google Scholar 

  67. Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan LW. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 1993; 259: 1918.

    Article  PubMed  CAS  Google Scholar 

  68. Ishihara M, Tyrrell DJ, Stauber GB, Brown S, Cousens LS, Stack RJ. Preparation of affinity-fractionated, heparin-derived oligosaccharides and their effects on selected biological activities mediated by basic fibroblast growth factor. J Biol Chem 1993; 268: 4675.

    PubMed  CAS  Google Scholar 

  69. Moscatelli D. Basic fibroblast growth factor (bFGF) dissociates rapidly from heparan sulfates but slowly from receptors. J Biol Chem 1992; 267: 25803.

    PubMed  CAS  Google Scholar 

  70. Gao G, Goldfarb M. Heparin can activate a receptor tyrosine kinase. EMBO J 1995; 14: 2183.

    PubMed  CAS  Google Scholar 

  71. Tyrrell DJ, Ishihara M, Rao N, Horne A, Kiefer MC, Stauber GB, Lam LH, Stack RJ. Structure and biological activities of a heparin-derived hexasaccharide with high affinity for basic fibroblast growth factor. J Biol Chem 1993; 268: 4684.

    PubMed  CAS  Google Scholar 

  72. Aviezer D, Levy E, Safran M, Svahn MC, Buddecke E, Schmidt A, David G, Vlodavsky I, Yayon A. Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor. J Biol Chem 1994; 269: 114.

    PubMed  CAS  Google Scholar 

  73. Walker A, Turnbull JE, Gallagher JT. Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. J Biol Chem 1994; 269: 931.

    PubMed  CAS  Google Scholar 

  74. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine-kinase activity. Cell 1990; 61: 203.

    Article  PubMed  CAS  Google Scholar 

  75. Spivak-Krolzman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, Jaye M, Crumley G, Schlessinger J, Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 1994; 79: 1015.

    Article  Google Scholar 

  76. Klagsbrun M, Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell 1991; 67: 229.

    Article  PubMed  CAS  Google Scholar 

  77. Casu B, Johnson EA, Mantovani M, Mulloy B, Oreste P, Pescador R, Prino G, Torri G, Zoppetti G. Correlation between structure, fat clearing and anticoagulant properties of heparin and heparan sulfates. Arzneimittelforschung 1983; 33: 135.

    PubMed  CAS  Google Scholar 

  78. Moscatelli D. Metabolism of receptor-bound and matrix-bound basic fibroblast growth factor by bovine capillary endothelial cells. J Cell Biol 1988; 107: 753.

    Article  PubMed  CAS  Google Scholar 

  79. Rusnati M, Urbinati C, Presta M. Internalization of basic fibroblast growth factor (bFGF) in cultured endothelial cells: role of the low affinity heparin-like bFGF receptors. J Cell Physiol 1993; 154: 152.

    Article  PubMed  CAS  Google Scholar 

  80. Gannoun-Zaky L, Pieri I, Badet J, Moener M, Barritault D. Internalization of basic fibroblast growth factor by chinese hamster lung fibroblast cells: involvement of several pathways. Exp Cell Res 1991; 197: 272.

    Article  Google Scholar 

  81. Roghani M, Moscatelli D. Basic fibroblast growth factor is internalized through both receptor-mediated and heparan sulfate-mediated mechanisms. J Biol Chem 1993; 267: 22156.

    Google Scholar 

  82. Reiland J, Rapraeger AC. Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J Cell Sci 1993; 105: 1085.

    PubMed  CAS  Google Scholar 

  83. Murono EP, Washburn AL, Goforth DP, Naixing W. Evidence that both receptor- and heparan sulfate proteoglycan-bound basic fibroblast growth factor are internalized by cultured immature Leydig cells. Mol Cell Endocrinol 1993; 98: 81.

    Article  PubMed  CAS  Google Scholar 

  84. Presta M, Tiberio L, Rusnati M, Dell'Era P, Ragnotti G. Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regul 1991; 2: 719.

    PubMed  CAS  Google Scholar 

  85. Baldin V, Roman AM, Bose-Bierne I, Amalric F, Bouche G. Translocation of bFGF to the nucleus is G1 phase cell cycle specific in bovine endothelial cells. EMBO J 1990; 9: 1511.

    PubMed  CAS  Google Scholar 

  86. Bouche G, Gas N, Prats H, Baldin V, Tauber JP, Teisse J, Amalric F. Basic fibroblast growth factor enters the nucleolus and stimulates the transcription of ribosomal genes in ABAE cells undergoing G0-G1 transition. Proc Natl Acad Sci USA 1987; 84: 6770.

    Article  PubMed  CAS  Google Scholar 

  87. Fedarko NS, Conrad E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J Cell Biol 1986; 102: 587.

    Article  PubMed  CAS  Google Scholar 

  88. Mali M, Elenius K, Miettinen HM, Jalkanen M. Inhibition of basic fibroblast growth factor-induced growth promotion by over-expression of syndecan-1. J Biol Chem 1993; 268: 24215.

    PubMed  CAS  Google Scholar 

  89. Nurcombe V, Ford MD, Wildschut JA, Bartlett PF. Developmental regulation of neuronal response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science 1993; 260: 103.

    Article  PubMed  CAS  Google Scholar 

  90. Hondermarck H, Deudon E, Boilly B. Embryonic brain-derived heparan sulfate inhibits cellular membrane binding and biological activity of basic fibroblast growth factor. Dev Brain Res 1992; 68: 247.

    Article  CAS  Google Scholar 

  91. Nakayama Y, Iwahana M, Sakamoto N, Tanaka NG, Osada Y. Inhibitory effects of a bacteria-derived sulfated polysaccharide against basic fibroblast growth factor-induced endothelial cell growth and chemotaxis. J Cell Physiol 1993; 154: 1.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusnati, M., Presta, M. Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans. Int J Clin Lab Res 26, 15–23 (1996). https://doi.org/10.1007/BF02644769

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644769

Key words

Navigation