Skip to main content
Log in

A growing family of receptor genes for lysophosphatidic acid (LPA) and other lysophospholipids (LPs)

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A missing component in the experimental analysis of cell signaling by extracellular lysophospholipids such as lysophosphatidic acid (LPA) or sphingosine-1-phosphate (S1P) has been cloned receptors. Through studies on the developing brain, the first such receptor gene (referred to asvzg-1) was identified, representing a member of the G-protein coupled receptor (GPCR) super family(1). Here we review the neurobiological approach that led to both its cloning and identification as a receptor for LPA, along with related expression data. Summarized sequence and genomic structure analyses indicate that this first, functionally identified receptor is encoded by a member of a growing gene family that divides into at least two subgroups: genes most homologous to the high-affinity LPA receptor encoded byvzg-1, and those more homologous to an orphan receptor geneedg-1 that has recently been identified as a S1P receptor. A provisional nomenclature is proposed, based on published functional ligand actions, amino acid composition and genomic structure whereby the receptors encoded by these genes are referred to as lysophospholipid (LP) receptors, with subgroups distinguished by letter and number subscripts (e.g., LPA1 for Vzg-1, and LPB1 for Edg-1). Presented expression data support the recently published work indicating that members of the LPB1 subgroup are receptors for the structurally-related molecule, S1P. The availability of cloned LP receptors will enhance the analysis of the many documented LP effects, while their prominent expression in the nervous system indicates significant but as yet unknown roles in development, normal function, and neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hecht, J. H., Weiner, J. A., Post, S. R., and Chun, J. (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex,J. Cell Biol. 135(4), 1071–1083.

    Article  PubMed  CAS  Google Scholar 

  2. Durieux, M. E., and Lynch, K. R. (1993) Signalling properties of lysophosphatidic acid.Trends Pharmacol. Sci. 14(6), 249–254.

    Article  PubMed  CAS  Google Scholar 

  3. Gaits, F., Fourcade, O., Le Balle, F., Gueguen, G., Gaig, B., Gassama-Diagne, A., Fauvel, J., Salles, J. P., Mauco, G., Simon, M. F., and Chap, H. (1997) Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis,FEBS Lett. 410(1), 54–58.

    Article  PubMed  CAS  Google Scholar 

  4. Moolenaar, W. H. (1995a) Lysophosphatidic acid signalling,Curr. Opin. Cell Biol. 7(2), 203–210.

    Article  PubMed  CAS  Google Scholar 

  5. Moolenaar, W. H. (1995b) Lysophosphatidic acid, a multifunctional phospholipid messenger,J. Biol. Chem. 270(22), 12,949–12,952.

    CAS  Google Scholar 

  6. Moolenaar, W. H., Jalink, K., and van Corven, E. J. (1992) Lysophosphatidic acid: a bioactive phospholipid with growth factor-like properties,Rev. Physiol. Biochem. Pharmacol. 119, 47–65.

    PubMed  CAS  Google Scholar 

  7. Moolenaar, W. H., Kranenburg, O., Postma, F. R., and Zondag, G. C. (1997) Lysophosphatidic acid: G-protein signalling and cellular responses.Curr. Opin. Cell Biol. 9(2), 168–173.

    Article  PubMed  CAS  Google Scholar 

  8. Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., and Spiegel, S. (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate,Nature 381(6585), 800–8003.

    Article  PubMed  CAS  Google Scholar 

  9. Edsall, L. C., Pirianov, G. G., and Spiegel, S. (1997) Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation.J. Neurosci. 17(18), 6952–6960.

    PubMed  CAS  Google Scholar 

  10. Spiegel, S., and Merrill, A. H., Jr. (1996) Sphingolipid metabolism and cell growth regulation,Faseb. J. 10(12), 1388–1397.

    PubMed  CAS  Google Scholar 

  11. Simon, M. F., Chap, H., and Douste-Blazy, L. (1982) Human platelet aggregation induced by 1-alkyl-lysophosphatidic acid and its analogs: a new group of phospholipid mediators?,Biochem Biophys Res Commun 108(4), 1743–1750.

    Article  PubMed  CAS  Google Scholar 

  12. Sugiura, T., Tokumura, A., Gregory, L., Nouchi, T., Weintraub, S. T., and Hanahan, D. J. (1994) Biochemical characterization of the interaction of lipid phosphoric acids with human platelets: comparison with platelet activating factor,Arch. Biochem. Biophys. 311(2), 358–368.

    Article  PubMed  CAS  Google Scholar 

  13. Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology,Anat. Rec.,166, 257–261.

    Article  Google Scholar 

  14. Erickson, J. R., Wu, J. J., Goddard, J. G., Tigyi, G., Kawanishi, K., Tomei, L. D., and Kiefer, M. C. (1998) Edg-2/Vzg-1 couples to the yeast pheromone response pathway selectively in response to lysophosphatidic acid,J. Biol. Chem. 273(3), 1506–1510.

    Article  PubMed  CAS  Google Scholar 

  15. Fukushima, N., Kimura, Y., and Chun, J. (1998) A single receptor encoded byvzg-1/lpA1/edg-2 couples to G-proteins and mediates multiple cellular responses to lysophosphatidic acid (LPA),Proc. Natl. Acad. Sci. USA. 95(11), 6151–6156.

    Article  PubMed  CAS  Google Scholar 

  16. Lee, M.-J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzeleev, R., Spiegel, S., and Hla, T. (1998) Sphingosine-1-Phosphate as a ligand for the G-protein coupled receptor EDG-1,Science 279, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  17. Zondag, G. C. M., Postma, F. R., van Etten, I., Verlaan, I., and Moolenaar, W. H. (1998) Sphingosine 1-phosphate singalling through the G-protein-coupled receptor Edg-1,Biochem. J. 330, 605–609.

    PubMed  CAS  Google Scholar 

  18. Angevine, J., Jr., Bodian, D., Coulombre, A., Edds, M., Jr., Hamburger, V., Jacobson, M., Lyser, K., Prestige, M., Sidman, R., Varon, S., and Weiss, P. (1970) Embryonic vertebrate central nervous system: revised terminology,Anat. Rec. 166, 257–262.

    Article  Google Scholar 

  19. Angevine, J. B., and Sidman, R. L. (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse,Nature 192, 766–768.

    Article  PubMed  Google Scholar 

  20. Caviness, V. S., Jr., Takahashi, T., and Nowakowski, R. S. (1995) Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model,Trends Neurosci. 18(9), 379–383.

    Article  PubMed  CAS  Google Scholar 

  21. Rakic, P., Stensas, L., Sayre, E., and Sidman, R. (1974) Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain,Nature 250(461), 31–34.

    Article  PubMed  CAS  Google Scholar 

  22. Sidman, R., Miale, I., and Feder, N. (1959) Cell proliferation and migration in the primitive ependymal zone; an autoradiographic study of histogenesis in the nervous system,Exp. Neurol. 1, 322–333.

    Article  PubMed  CAS  Google Scholar 

  23. Weiner, J. A., and Chun, J. (1997b)Png-1, a nervous system-specific zinc finger gene, identifies regions containing postmitotic neurons during mammalian embryonic development,J. Comp. Neurol. 381, 130–142.

    Article  PubMed  CAS  Google Scholar 

  24. Blaschke, A. J., Staley, K., and Chun, J. (1996) Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex,Development 122(4), 1165–1174.

    PubMed  CAS  Google Scholar 

  25. Blaschke, A. J., Weiner, J. A., and Chun, J. (1998) Programmed cell death is a universal feature of neuroproliferative regions throughout the developing CNS,J. Comp. Neurol. 396(1), 39–50.

    Article  PubMed  CAS  Google Scholar 

  26. Chun, J., and Blaschke, A. J. (1997) Identification of neural programmed cell death through the detection of DNA fragmentation in situ and by PCR, in:Current Protocols in Neuroscience (J. N. e. a. Crawley, ed.), John Wiley and Sons, Inc., New York, pp. 3.8.1–3.8.19.

    Google Scholar 

  27. Staley, K., Blaschke, A. J., and Chun, J. J. M. (1997) Apoptotic DNA fragmentation is detected by a semi-quantitative ligation-mediated PCR of blunt DNA Ends,Cell Death and Diff. 4, 66–75.

    Article  CAS  Google Scholar 

  28. Sauer, F. C. (1935) Mitosis in the neural tube,J Comp Neurol 62, 377–405.

    Article  Google Scholar 

  29. Seymour, R. M., and Berry, M. (1975) Scanning and transmission electron microscope studies of interkinetic nuclear migration in the cerebral vesicles of the rat,J. Comp. Neurol. 160(1), 105–125.

    Article  PubMed  CAS  Google Scholar 

  30. Augusti-Tocco, G., and Sato, G. (1969) Establishment of functional clonal lines of neurons from mouse neuroblastoma,Proc. Natl. Acad. Sci. USA. 64, 312–315.

    Article  Google Scholar 

  31. Klee, W. A., and Nirenberg, M. (1974) A neuroblastoma times glioma hybrid cell line with morphine receptors,Proc. Natl. Acad. Sci. USA 71, 3473–3477.

    Article  Google Scholar 

  32. Greene, L. A. (1978) Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium,J. Cell Biol. 78(3), 747–755.

    Article  PubMed  CAS  Google Scholar 

  33. Greene, L. A., and Tischler, A. S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor,Proc. Natl. Acad. Sci. USA 73(7), 2424–2428.

    Article  PubMed  CAS  Google Scholar 

  34. Chun, J., and Jaenisch, R. (1996) Clonal cell lines produced by infection of neocortical neuroblasts using multiple oncogenes transduced by retroviruses,Mol. Cell Neurosci. 7(4), 304–321.

    Article  PubMed  CAS  Google Scholar 

  35. Weiner, J. A., and Chun, J. (1997a) Maternally derived immunoglobulin light chain is present in the fetal mammalian CNS,J. Neursci. 17(9), 3148–3156.

    CAS  Google Scholar 

  36. Buck, L., and Axel, R. (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition,Cell 65(1), 175–187.

    Article  PubMed  CAS  Google Scholar 

  37. Libert, F., Parmentier, M., Lefort, A., Dinsart, C., Van Sande, J., Maenhaut, C., Simons, M. J., Dumont, J. E., and Vassart, G. (1989) Selective amplification and cloning of four new members of the G protein-coupled receptor family:Science 244(4904), 569–572.

    Article  PubMed  CAS  Google Scholar 

  38. Gensburger, C., Labourdette, G., and Sensenbrenner, M. (1987) Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro.FEBS Lett. 217(1), 1–5.

    Article  PubMed  CAS  Google Scholar 

  39. Ghosh, A., and Greenberg, M. E. (1995) Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis,Neuron 15(1), 89–103.

    Article  PubMed  CAS  Google Scholar 

  40. Kilpatrick, T. J., and Bartlett, P. F. (1993) Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation.Neuron 10, 255–265.

    Article  PubMed  CAS  Google Scholar 

  41. Temple, S., and Qian, X. (1995) bFGF, neurotrophins, and the control or cortical neurogenesis,Neuron 15(2), 249–252.

    Article  PubMed  CAS  Google Scholar 

  42. Temple, S., and Davis, A. A. (1994) Isolated rat cortical progenitor cells are maintained in division in vitro by membrane-associated factors,Development 120(4), 999–10008.

    PubMed  CAS  Google Scholar 

  43. An, S., Dickens, M. A., Bleu, T., Hallmark, O. G., and Goetzl, E. J. (1997b) Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid,Biochem. Biophys. Res. Commun. 231(3), 619–622.

    Article  PubMed  CAS  Google Scholar 

  44. Macrae, A. D., Premont, R. T., Jaber, M., Peterson, A. S., and Lefkowitz, R. J. (1996) Cloning, characterization, and chromosomal localization of rec1.3, a member of the G-protein-coupled receptor family highly expressed in brain,Brain Res. Mol. Brain Res. 42(2), 245–254.

    Article  PubMed  CAS  Google Scholar 

  45. Liu, C. H., and Hla, T. (1997) The mouse gene for the inducible G-protein-coupled receptor edg-1,Genomics 43(1), 15–24.

    Article  PubMed  CAS  Google Scholar 

  46. Hla, T., and Maciag, T. (1990) An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors.J. Biol. Chem. 265(16), 9308–9313.

    PubMed  CAS  Google Scholar 

  47. Lee, M. J., Evans, M., and Hla, T. (1996) The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway,J. Biol. Chem. 271(19), 11,272–11,279.

    CAS  Google Scholar 

  48. Hla, T., Jackson, A. Q., Appleby, S. B., and Maciag, T. (1995) Characterization of edg-2, a human homologue of the Xenopus maternal transcript G10 from endothelial cells.Biochim. Biophys. Acta. 1260(2), 227–229.

    PubMed  Google Scholar 

  49. Hla, T., Zimrin, A. B., Evans, M., Ballas, K., and Maciag, T. (1997) The immediate-early gene product MAD-3/EDG-3/IkappaB alpha is an endogenous modulator of fibroblast growth factor-1 (FGF-1) dependent human endothelial cell growth.FEBS Lett. 414(2), 419–424.

    Article  PubMed  CAS  Google Scholar 

  50. Stella, N., Schweitzer, P., and Piomelli, D. (1997) A second endogenous cannabinoid that modulates long-term potentiation.Nature 388(6644), 773–778.

    Article  PubMed  CAS  Google Scholar 

  51. Lado, D. C., Browe, C. S., Gaskin, A. A., Borden, J. M., and MacLennan, A. J. (1994) Cloning of the rat edg-1 immediate-early gene: expression pattern suggests diverse functions.Gene 149(2), 331–336.

    Article  PubMed  CAS  Google Scholar 

  52. MacLennan, A. J., Browe, C. S., Gaskin, A. A., Lado, D. C., and Shaw, G. (1994) Cloning and characterization of a putative G-protein coupled receptor potentially involved in development.Mol. Cell Neurosci. 5(3), 201–209.

    Article  PubMed  CAS  Google Scholar 

  53. Masana, M. I., Brown, R. C., Pu, H., Gurney, M. E., and Dubocovich, M. L. (1995) Cloning and characterization of a new member of the G-protein coupled receptor EDG family,Receptors Channels 3(4), 255–262.

    PubMed  CAS  Google Scholar 

  54. Okazaki, H., Ishizaka, N., Sakurai, T., Kurokawa, K., Goto, K., Kumada, M., and Takuwa, Y. (1993) Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system,Biochem. Biophys. Res. Commun. 190(3), 1104–1109.

    Article  PubMed  CAS  Google Scholar 

  55. Wilkie, T. M., Chen, Y., Gilbert, D. J., Moore, K. J., Yu, L., Simon, M. I., Copeland, N. G., and Jenkins, N. A. (1993) Identification, chromosomal location, and genome organization of mammalian G-protein-coupled receptors,Genomics 18(2), 175–184.

    Article  PubMed  CAS  Google Scholar 

  56. Yamaguchi, F., Tokuda, M., Hatase, O., and Brenner, S. (1996) Molecular cloning of the novel human G protein-coupled receptor (GPCR) gene mapped on chromosome 9.Biochem Biophys. Res. Commun. 227(2), 608–614.

    Article  PubMed  CAS  Google Scholar 

  57. Abbod, M. E., Ditto, K. E., Noel, M. A., Showalter, V. M., and Tao, Q. (1997) Isolation and expression of a mouse CB1 cannabinoid receptor gene. Comparison of binding properties with those of native CB1 receptors in mouse brain and N18TG2 neuroblastoma cells,Biochem. Pharmacol. 53(2), 207–214.

    Article  Google Scholar 

  58. Mechoulam, R., Ben Shabat, S., Hanus, L., Fride, E., Vogel, Z., Bayewitch, M., and Sulcova, A. E. (1996) Endogenous cannabinoid ligands—chemical and biological studies,J. Lipid Mediat. Cell Signal 14(1–3), 45–49.

    Article  PubMed  CAS  Google Scholar 

  59. Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., Gopher, A., Almog, S., Martin, B. R., Compton, D. R., and et al. (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors.Biochem. Pharmacol. 50(1), 83–90.

    Article  PubMed  CAS  Google Scholar 

  60. Yatomi, Y., Yamamura, S., Ruan, F., and Igarashi, Y. (1997) Sphingosine 1-phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid.J. Biol. Chem. 272(8), 5291–5297.

    Article  PubMed  CAS  Google Scholar 

  61. Postma, F. R., Jalink, K., Hengeveld, T., and Moolenaar, W. H. (1996) Sphingosine-1-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor,Embo. J. 15(10), 2388–2392.

    PubMed  CAS  Google Scholar 

  62. An, S., Bleu, T., Huang, W., Hallmark, O. G., Coughlin, S. R., and Goetzl, E. J. (1997a) Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids,FEBS Lett. 417(3), 279–282.

    Article  PubMed  CAS  Google Scholar 

  63. Hooks, S. B., Ragan, S. P., Hopper, D. W., Hönemann, C. W., Durieux, M. E., Macdonald, T. L., and Lynch, K. R. (1998) Characterization of a receptor subtype-selective lysophosphatidic acid mimetic,Mol. Pharmacol. 53(2), 188–194.

    PubMed  CAS  Google Scholar 

  64. Guo, Z., Liliom, K., Fischer, D. J., Bathurst, I. C., Tomei, L. D., Kiefer, M. C., and Tigyi, G. (1996) Molecular cloning of a high-affinity receptor for the growth factor-like lipid mediator lysophosphatidic acid from Xenopus oocytes,Proc. Natl. Acad. Sci. U S A 93(25), 14,367–14,372.

    CAS  Google Scholar 

  65. Tokumura, A., Fukuzawa, K., and Tsukatani, H. (1978) Effects of synthetic and natural lysophosphatidic acids on the arterial blood pressure of different animal species,Lipids 13(8), 572–574.

    Article  PubMed  CAS  Google Scholar 

  66. Tokumura, A., Fukuzawa, K., Yamada, S., and Tsukatani, H. (1980) Stimulatory effect of lysophosphatidic acids on uterine smooth muscles of non-pregant rats,Arch. Int. Pharmacodyn. Ther. 245(1), 74–83.

    PubMed  CAS  Google Scholar 

  67. Higgins, D. G., Thompson, J. D., and Gibson, T. J. (1996) Using CLUSTAL for multiple sequence alignments,Methods Enzymol. 266, 383–402.

    PubMed  CAS  Google Scholar 

  68. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,Nucleic Acids Res. 22(22), 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  69. Feng, D. F., and Doolittle, R. F. (1996) Progressive alignment of amino acid sequences and construction of phylogenetic trees from them,Methods Enzymol. 266, 368–382.

    Article  PubMed  CAS  Google Scholar 

  70. Chun, J. (1999) Lysophospholipid receptors: Implications for Neural Signaling.Crit. Rev. Neurobiol. in press.

  71. Dubin, A. E., Bahnson, T., Weiner, J. A., Fukushima, N., and Chun, J. (1999) Lysophosphatidic acid (LPA) stimulates neurotransmitterlike conductance changes that precede GABA and L-Glutamate in early, presumptive cortical neuroblasts.J. Neurosci. 19, 1371–1381.

    PubMed  CAS  Google Scholar 

  72. Weiner, J. A., Hecht, J. H., and Chun, J. (1998) The lysophosphatidic acid receptor genevzg-1/lp A1 /edg-2 is expressed by mature oligoden-drocytes during myelination in the postnatal murine brain.J. Comp. Neurol.,398, 587–598.

    Article  PubMed  CAS  Google Scholar 

  73. Contos, J. J., and Chun, J. (1998) Complete cDNA sequence, genomic structure, and chromosomal localization of the LPA receptor gene, lpA1/vzg-1/Gpcr26.Genomics 51(3), 364–378.

    Article  PubMed  CAS  Google Scholar 

  74. Lee, M. J., Thangada, S., Liu, C. H., Thompson, B. D., and Hla, T. (1998) Lysophosphatidic acid stimulates the G-protein-coupled receptor EDG-1 as a low affinity agonist.J. Biol. Chem. 273(34), 22,105–22,112.

    Article  CAS  Google Scholar 

  75. Zhang, G., Contos, J. J. A., Weiner, J. A., Fukushima, N., and Chun, J. (1999) Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-1-phosphate,Gene 227, 89–99.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerold Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, J., Contos, J.J.A. & Munroe, D. A growing family of receptor genes for lysophosphatidic acid (LPA) and other lysophospholipids (LPs). Cell Biochem Biophys 30, 213–242 (1999). https://doi.org/10.1007/BF02738068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738068

Index Entries

Navigation