Skip to main content
Log in

Renal handling of inorganic mercury in mice

The early excretion phase following a single intravenous injection of mercuric chloride studied by the Silver Amplification method

  • Published:
Virchows Archiv B

Summary

The early renal excretion of mercuric mercury was studied in male BALB/c mice between 15 seconds and 30 min following a single intravenous injection of 3 mg HgCl2/kg body weight. The cytochemical Silver Amplification method applied at the light and electron microscopical levels showed mercury to be excreted by glomerular filtration and reabsorbed by proximal tubular epithelial cells by means of adsorptive endocytosis. Mercury was rapidly demonstrated in the lysosomal vacuome of proximal tubular epithelial cells. No uptake was observed from the peritubular side, and there was no evidence of tubular secretion of mercury.

It is proposed that mercury is excreted in the form of mercury-protein complexes, assisted by the physiological proteinuria in mice, which is enhanced by mercury-induced damage to the glomerular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baumann K, Bode F, Ottosen PD, Madsen KM, Maunsbach AB (1980) Quantitative analysis of protein absorption in microperfused proximal tubules of the rat kidney. In: Maunsbach AB, Olsen ST, Christensen EI (eds) Functional ultrastructure of the kidney. Academic Press, London/New York/Toronto/Sydney/San Francisco, pp 291–301

    Google Scholar 

  • Bergstrand A, Friberg L, Odeblad E (1958) Localization of mercury in the kidneys after subcutaneous administration. Arch Ind Health 17: 253–256

    CAS  Google Scholar 

  • Berlin M (1979) Mercury. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals. Elsevier/North-Holland Biomedical Press, Amsterdam/New York/ Oxford, pp 503–539

    Google Scholar 

  • Berlin M, Gibson S (1963) Renal uptake, excretion, and retention of mercury. I. A study in the rabbit during infusion of mercuric chloride. Arch Environ Health 6: 617–625

    PubMed  CAS  Google Scholar 

  • Bode F, Ottosen PD, Madsen KM, Maunsbach AB (1980) Does transtubular transport of intact protein occur in the kidney? In: Maunsbach AB, Olsen TS, Christensen EI (eds) Functional ultrastructure of the kidney. Academic Press, London/New York/Toronto/ Sydney/San Francisco, pp 385–295

    Google Scholar 

  • Bohman S-O, Maunsbach AB (1970) Effects on tissue fine structure of variations in colloid osmotic pressure of glutaraldehyde fixative. J Ultrastruct Res 30: 195–208

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Cember H, Gallagher P, Faulkner A (1968) Distribution of mercury among blood fractions and serum proteins. Am Ind Hyg Assoc J 29: 233–237

    PubMed  CAS  Google Scholar 

  • Christensen EI (1976) Rapid protein uptake and digestion in proximal tubule lysosomes. Kidney Int 10: 301–310

    Article  PubMed  CAS  Google Scholar 

  • Christensen EI, Maunsbach AB (1980) Digestion of protein in lysosomes of proximal tubule cells. In: Maunsbach AB, Olsen TS, Christensen EI (eds) Functional ultrastructure of the kidney. Academic Press, London/New York/Toronto/Sydney/San Francisco, pp 341–359

    Google Scholar 

  • Christensen EI, Carone FAC, Rennke HG (1981) Effect of molecular charge on endocytic uptake of ferritin in renal proximal tubule cells. Lab Invest 44: 351–358

    PubMed  CAS  Google Scholar 

  • Cikrt M, Heller J (1980) Renal tubular handling of203Hg2+ in the dog: A microinjection study. Environ Res 21: 308–313

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW, Magos L (1970) Effect of 2,4-dinitrophenol and other metabolic inhibitors on the renal deposition and excretion of mercury. Biochem Pharmacol 19: 3029–3037

    Article  PubMed  CAS  Google Scholar 

  • Danscher G (1981) Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry 71: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Danscher G (1982) Exogenous selenium in the brain. A histochemical technique for light and electron microscopical localization of catalytic selenium bonds. Histochemistry 76: 281–293

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Schröder HD (1979) Histochemical demonstration of mercury induced changes in rat neurons. Histochemistry 60: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Möller-Madsen B (1985) Silver amplification of mercury sulphide and selenide: A histochemical method for ilght and electron microscopic localization of mercury in tissue. J Histochem Cytochem 33: 219–228

    PubMed  CAS  Google Scholar 

  • Dreisbach RH, Taugner R (1966) Renale „Stapelung“ und Ausscheidung von203Hg-Sublimat bei der Ratte. Nuclear Med 5: 421–435

    CAS  Google Scholar 

  • Eneström S, Hultman P (1984) Immune-mediated glomerulonephritis induced by mercuric chloride in mice. Experientia 40: 1234–1240

    Article  PubMed  Google Scholar 

  • Gayer J, Graul EH, Hundeshagen H (1962) Die Lokalisierung des Transportes von Hg2+ -Ionen in der Niere durch Stopflow-Analyse. Klin Wochenschr 40: 953–955

    Article  PubMed  CAS  Google Scholar 

  • Hoffsten PE, Hill CL, Klahr S (1975) Studies of albuminuria and proteinuria in normal mice and mice with immune complex glomerulonephritis. J Lab Clin Med 86: 920–930

    PubMed  CAS  Google Scholar 

  • Hultman P, Eneström S (1983) Experimental Hg-nephropathy: correlation between histochemistry and analytical EM. J Ultrastruct Res 85: 1189–1190

    Google Scholar 

  • James TH (1939) The reduction of silver ions by hydroquinoe. J Am Chem 61: 648–652

    Article  CAS  Google Scholar 

  • James TH (1977) The theory of the photographic process. Macmillan Publ Co, New York, ch 13

    Google Scholar 

  • Jeppson JO, Laurell CB, Franzen B (1979) Agarose gel electrophoreses. Clin Chem 25: 629–638

    PubMed  CAS  Google Scholar 

  • Kempson SA, Ellis BG, Price RG (1977) Changes in rat renal cortex, isolated plasma membranes, and urinary enzymes following the injection of mercuric chloride. Chem Biol Interact 18: 217–234

    Article  PubMed  CAS  Google Scholar 

  • Lippman RW, Finkle RD, Gilette D (1951) Effect of proteinuria on localization of radiomercury in rat kidney. J P Proc Soc Exp Biol Med 77: 68–70

    CAS  Google Scholar 

  • Madsen KM (1980) Mercury accumulation in kidney lysosomes of proteinuric rats. Kidney Int 18: 445–453

    Article  PubMed  CAS  Google Scholar 

  • Madsen M, Hansen HC (1980) Subcellular distribution of mercury in the rat kidney cortex after exposure to mercuric chloride. Toxicol Appl Pharmacol 54: 443–453

    Article  PubMed  CAS  Google Scholar 

  • Mambourg AM, Raynaud C (1965) Etude, a l’aide d’isotopes radioactifs, du mechanisme de l’excretion urinaire du mercure chez le lapin. Rev Franc Etudes Clin Biol 10: 414–418

    PubMed  CAS  Google Scholar 

  • Maunsbach AB (1966a) Absorption of I125-labeled homologous albumin by rat kidney proximal tubule cells. A study of microperfused single proximal tubules by electron microscopic autoradiography and histochemistry. J Ultrastruct Res 15: 197–241

    Article  PubMed  CAS  Google Scholar 

  • Maunsbach AB (1966b) The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. 1. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J Ultrastruct Res 15: 242–282

    Article  PubMed  CAS  Google Scholar 

  • Maunsbach AB (1966c) Observations on segmentation of the proximal tubule in rat kidney. Comparison of results from phase contrast, fluorescence and electron microscopy. J Ultrastruct Res 16: 239–258

    Article  PubMed  CAS  Google Scholar 

  • Maunsbach AB (1976) Cellular mechanisms of tubular protein transport. In: Thurau K (ed) Kidney and urinary physiology II, Int Rev Sci, Physiol, Series 2, vol 11. University Park Press, Baltimore, pp 145–167

    Google Scholar 

  • McDowell EM, Nagle RB, Zalme RC, McNeil JS, Flamenbaum W, Trump BF (1976) Studies on the pathophysiology of acute renal failure. Correlation of ultrastructure and function in the proximal tubule of the rat following administration of mercuric chloride. Virchows Arch [Cell Pathol] 22: 173–196

    CAS  Google Scholar 

  • Miller F, Palade GE (1964) Lytic activities in renal protein absorption droplets. An electron microscopical cytochemical study. J Cell Biol 23: 519–551

    Article  PubMed  CAS  Google Scholar 

  • Nordberg GF, Skerfving S (1974) Metabolism In: Friberg L, Vostal D (eds) Mercury in the environment. CRC Press, Cleveland, Ohio [USA], pp 29–91

    Google Scholar 

  • Pesce AJ, Hanenson I, Sethi K (1977) Beta2 microgloburinuria in a patient with nephrotoxicity secondary to mercuric chloride ingestion. Clin Toxicol 11: 309–315

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, Cember H (1969) The influence of body burden of radiomercury on radiation dose. J Occup Med 11: 170–174

    Article  PubMed  CAS  Google Scholar 

  • Reuter AM, Hamoir G, Marchand R, Kennes F (1968) Isolation and properties of a mouse serum prealbumin excreted in urine. Eur J Biochem 5: 233–238

    Article  PubMed  CAS  Google Scholar 

  • Rhodin J (1958) Anatomy of kidney tubules. Int Rev Cytol 7: 485–534

    Google Scholar 

  • Rodin AE, Crowson CN (1962) Mercury nephrotoxicity in the rat. 1. Factor influencing the localization of the tubular lesions. Am J Pathol 61: 297–313

    Google Scholar 

  • Rothstein A (1973) Mercaptans, the biological targets for mercurials. In: Miller MW, Clarkson TW (eds) Mercury, mercurials and mercaptans. Charles C Thomas Publisher, Springfield/ Illinois [USA], pp 68–166

    Google Scholar 

  • Staemmler M (1956) Die akuten Nephrosen. I. Mitteilung. Die Sublimatnephrose. Virchows Arch [Pathol Anat] 328: 1–17

    Article  CAS  Google Scholar 

  • Straus W (1962) Colonmetric investigation of the uptake of an intravenously injected protein (horseradish peroxidase) by rat kidney and effects of competition by egg white. J Cell Biol 12: 231–246

    Article  PubMed  CAS  Google Scholar 

  • Timm F (1958) Zur Histochemie der Schwermetalle. Das Sulfid-Silberverfahren. Dtsch Z Ges Gerichtl Med 46: 706–711

    Article  CAS  Google Scholar 

  • Vostal J, Heller J (1968) Renal excretory mechanisms of heavy metals. Transtubular transport of heavy metal ions in the avian kidney. Environ Res 2: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Wöckel W, Stegner H-E, Jänisch W (1961) Zum topochemischen Quecksilbernachweis in der Niere bei experimenteller Sublimatvergiftung. Virchows Arch [Pathol Anat] 334: 503–509

    Article  Google Scholar 

  • Zahne RC, McDowell EM, Nagle RB, McNeil JS, Flamenbaum W, Trump BF (1976) Studies on pathophysiology of acute renal failure. II. A histochemical study of the proximal tubule of the rat following administration of mercuric chloride. Virchows Arch [Cell Pathol] 22: 197–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the Swedish Medical Research Council, Project 6536

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hultman, P., Eneström, S. & von Schenck, H. Renal handling of inorganic mercury in mice. Virchows Archiv B Cell Pathol 49, 209–224 (1985). https://doi.org/10.1007/BF02912098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02912098

Key words

Navigation