Skip to main content
Log in

Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Studies into the pathophysiology of schizophrenia have consistently demonstrated a dysfunction of dopamine (DA) system regulation in this disorder. This includes hyper-responsivity to DA agonists, the therapeutic efficacy of DA antagonists, and augmented striatal DA release in response to amphetamine. Nonetheless, there is little evidence for a pathological alteration with the DA system itself in schizophrenia. Instead, it is suggested that the disturbance lies in the manner by which the DA system is regulated. Recently, rodent models of schizophrenia have been advanced based on developmental disruption that recapitulates many of the symptoms observed in human schizophrenia patients. We found that administration of the mitotoxin methylazoxymethanol acetate (MAM) to rats at gestational day 17 leads to adult rats that exhibit neuroanatomical, pharmacological, and behavioral characteristics consistent with schizophrenia. These rats also exhibit hyperactivity within the ventral subiculum of the hippocampus that corresponds to a loss of parvalbumin-containing interneurons. This hyperactivity causes an increase in the population activity of the DA neurons(i.e., more DA neurons are firing spontaneously), thus increasing the responsivity of the DA system to stimuli. When the ventral subiculum is inactivated, DA neuron population activity is restored to baseline, and the hyperresponsivity to amphetamine is normalized to that observed in control rats. These findings demonstrate a direct link between the hippocampal pathophysiology, interneuronal alterations, and hyperdopaminergic state observed in the schizophrenia patient. Moreover, this suggests an alternate pharmacotherapeutic approach based on the normalization of hippocampal activity in the treatment of schizophrenia in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul-Monim Z, JC Neill and GP Reynolds (2007) Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat.J. Psychopharmacol. 21(2), 198–205.

    Article  PubMed  CAS  Google Scholar 

  • Abi-Dargham A (2004) Do we still believe in the dopamine hypothesis? New data bring new evidence.Int. J. Neuropsychopharmacol. 7 Suppl. 1, S1-S5.

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, JJ Kim, SG Potkin, JO Hagman, A Tafazzoli, WE Bunney Jr and EG Jones (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons inprefrontal cortex of schizophrenics.Arch. Gen. Psychiatry 52, 258–278.

    PubMed  CAS  Google Scholar 

  • Andreasen NC (1995) Symptoms, signs, and diagnosis of schizophrenia.Lancet 346(8973), 477–481.

    Article  PubMed  CAS  Google Scholar 

  • Benes FM (2002) Is the GABA cell a final common pathway for the etiology and treatment of schizophrenia and bipolar disorder?Curr. Opin. Psychiatry 15(3), 277–278.

    Article  Google Scholar 

  • Benes FM and S Berretta (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder.Neuropsychopharmacol. 25(1), 1–27.

    Article  CAS  Google Scholar 

  • Benes FM, B Lim, D Matzilevich, JP Walsh, S Subburaju and M Minns (2007) Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars.Proc. Natl. Acad. Sci. USA 104(24), 10164–10169.

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC and TE Robinson (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?Brain Res. Rev. 28(3), 309–369.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, N Waters, S Waters and ML Carlsson (2000) Network interactions in schizophrenia -therapeutic implications.Brain Res. Rev. 31(2–3), 342–349.

    Article  PubMed  CAS  Google Scholar 

  • Chergui K, H Akaoka, PJ Charlety, CF Saunier, M Buda and G Chouvet (1994) Subthalamic nucleus modulates burst firing of nigral dopamine neurones via NMDA receptors.Neuroreport 5, 1185–1188.

    PubMed  CAS  Google Scholar 

  • Flagstad P, A Mork, BY Glenthoj, J van Beek, AT Michael-Titus and M Didriksen (2004) Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens.Neuropsychopharmacol. 29(11), 2052–2064.

    Article  CAS  Google Scholar 

  • Floresco SB, AR West, B Ash, H Moore and AA Grace (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission.Nat. Neurosci. 6(9), 968–973.

    Article  PubMed  CAS  Google Scholar 

  • Goto Y and AA Grace (2006) Alterations in medial prefrontal cortical activity and plasticity in rats with disruption of cortical development.Biol. Psychiatry 60(11), 1259–1267.

    Article  PubMed  Google Scholar 

  • Gourevitch R, C Rocher, G Le Pen, MO Krebs and TM Jay (2004) Working memory deficits in adult rats after prenatal disruption of neurogenesis.Behav. Pharmacol. 15(4), 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia.Neuroscience 41, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (2000) The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving.Addiction 95, Suppl. 2, S119-S128.

    PubMed  Google Scholar 

  • Grace AA and H Moore (1998) Regulation of information flow in the nucleus accumbens: a model for the pathophysiology of schizophrenia, In: Origins and Development of Schizophrenia: Advances in Experimental Psychopathology (Lenzenweger MF and RH Dworkin, Eds.) (American Psychological Assn:Washington DC), pp 123–157.

    Chapter  Google Scholar 

  • Grace AA, SB Floresco, Y Goto and DJ Lodge (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors.Trends Neurosci. 30(5), 220–227.

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation.Brain 122(4), 593–624.

    Article  PubMed  Google Scholar 

  • Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications.Psychopharmacol. 174(1), 151–162.

    CAS  Google Scholar 

  • Harte MK, SB Powell, NR Swerdlow, MA Geyer and GP Reynolds (2007) Deficits in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats.J. Neural Transm. 114(7), 893–898.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, DW Volk, SM Eggan, K Mirnics, JN Pierri, Z Sun, AR Sampson and DA Lewis (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.J. Neurosci. 23(15), 6315–6326.

    PubMed  CAS  Google Scholar 

  • Heckers S (2004) The hippocampus in schizophrenia.Am. J. Psychiatry 161(11), 2138–2139.

    Article  PubMed  Google Scholar 

  • Heckers S and C Konradi (2002) Hippocampal neurons in schizophrenia.J. Neural Transm. 109(5), 891–905.

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, SL Rauch, D Goff, CR Savage, DL Schacter, AJ Fischman and NM Alpert (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia.Nat. Neurosci. 1, 318–323.

    Article  PubMed  CAS  Google Scholar 

  • Heckers S, D Stone, J Walsh, J Shick, P Koul and FM Benes (2002) Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia.Arch. Gen. Psychiatry 59(6), 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Hornig M and WI Lipkin (2001) Infectious and immune factors in the pathogenesis of neurodevelopmental disorders: epidemiology, hypotheses, and animal models.Ment. Retard. Dev. Disabil. Res. Rev. 7(3), 200–210.

    Article  PubMed  CAS  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia.Am. J. Psychiatry 160(1), 13–23.

    Article  PubMed  Google Scholar 

  • Krieckhaus EE, JW Donahoe and MA Morgan (1992) Paranoid schizophrenia may be caused by dopamine hyperactivity of CA1 hippocampus.Biol. Psychiatry 31, 560–570.

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, MA Weiler, HH Holcomb, CA Tamminga, WT Carpenter and R McMahon (2006) Correlations between rCBF and symptoms in two independent cohorts of drug-free patients with schizophrenia.Neuropsychopharmacol. 31(1), 221–230.

    Google Scholar 

  • Laruelle M and A Abi-Dargham (1999) Dopamine as the wind of psychotic fire: new evidence from brain imaging studies.J. Psychopharmacol. 13(4), 358–371.

    Article  PubMed  CAS  Google Scholar 

  • Legault M and RA Wise (1999) Injections of N-methyl-Daspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens.Synapse 31(4), 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA and G Gonzalez-Burgos (2008) Neuroplasticity of neocortical circuits in schizophrenia.Neuropsychopharmacol. 33, 141–165.

    Article  Google Scholar 

  • Lewis DA and P Levitt (2002) Schizophrenia as a disorder of neurodevelopment.Annu. Rev. Neurosci. 25, 409–432.

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, T Hashimoto and DW Volk (2005) Cortical inhibitory neurons and schizophrenia.Nat. Rev. Neurosci. 6(4), 312–324.

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, and AA Grace (2006) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation.Neuropsychopharmacol. 31(7), 1356–1361.

    Article  CAS  Google Scholar 

  • Lodge DJ and AA Grace (2007) Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia.J. Neurosci. 27, 11424–11430.

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, Behrens, M., and Grace, A. A. (2007) Diminished GABAergic regulation of hippocampal activity in an animal model of schizophrenia. In Preparation.

  • Marenco S and DR Weinberger (2000) The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave.Dev. Psychopathol. 12(3), 501–527.

    Article  PubMed  CAS  Google Scholar 

  • McNeil TF (1995) Perinatal risk factors and schizophrenia: selective review and methodological concerns.Epidemiol. Rev. 17(1), 107–112.

    PubMed  CAS  Google Scholar 

  • McNeil TF, E Cantor-Graae and B Ismail (2000) Obstetric complications and congenital malformation in schizophrenia.Brain Res. Rev. 31(2–3), 166–178.

    Article  PubMed  CAS  Google Scholar 

  • Medoff DR, HH Holcomb, AC Lahti and CA Tamminga (2001) Probing the human hippocampus using rCBF: contrasts in schizophrenia.Hippocampus 11(5), 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A and DR Weinberger (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders.Nat. Rev. Neurosci. 7(10), 818–827.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, JB Poline, PD Kohn, JL Holt, MF Egan, DR Weinberger and KF Berman (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia.Am. J. Psychiatry 158(11), 1809–1817.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, GE DFuncan, CE Marx and JA Lieberman (2004) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs.Mol. Psychiatry 10(1), 79–104.

    Article  CAS  Google Scholar 

  • Moore H, JD Jentsch, M Ghajarnia, MA Geyer and AA Grace (2006) A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia.Biol. Psychiatry 60(3), 253–264.

    Article  PubMed  CAS  Google Scholar 

  • Moses SN, RJ Sutherland and RJ McDonald (2002) Differential involvement of amygdala and hippocampus in responding to novel objects and contexts.Brain Res. Bull. 58(5), 517–527.

    Article  PubMed  Google Scholar 

  • Murray RM, P Jones, E O’Callaghan, N Takei and P Sham (1992) Genes, viruses and neurodevelopmental schizophrenia.J. Psychiatr. Res. 26, 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Nelson MD, AJ Saykin, LA Flashman and HJ Riordan (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study.Arch. Gen. Psychiatry 55(5), 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Nordahl TE, N Kusubov, C Carter, S Salamat, AM Cummings, L O’Shora-Celayaet al. (1996) Temporal lobe metabolic differences in medication-free outpatients with schizophrenia via the PET-600.Neuropsychopharmacol. 15(6), 541–554.

    Article  CAS  Google Scholar 

  • Ounsted C and J Lindsay (1981)Epilepsy and Psychiatry (Reynolds EH and MR Trinble, Eds.) (Churchill Livingstone:Edinburgh).

    Google Scholar 

  • Pearce BD (2001) Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms.Mol. Psychiatry 6(6), 634–646.

    Article  PubMed  CAS  Google Scholar 

  • Penschuck S, P Flagstad, M Didriksen, M Leist and AT Michael-Titus (2006) Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia.Eur. J. Neurosci. 23(1), 279–284.

    Article  PubMed  Google Scholar 

  • Reynolds GP, CL Beasley and ZJ Zhang (2002) Understanding the neurotransmitter pathology of schizophrenia: Selective deficits of subtypes of cortical GABAergic neurons.J. Neural Transm. 109(5-6), 881–889.

    Article  PubMed  CAS  Google Scholar 

  • Saykin AJ, RC Gur, RE Gur, PD Mozley, LH Mozley, SM Resnick, DB Kester and P Stafiniak (1991) Neuropsychological function in schizophrenia. Selective impairment in memory and learning.Arch. Gen. Psychiatry 48, 618–624.

    PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons.J. Neurophysiol. 80(1), 1–27.

    PubMed  CAS  Google Scholar 

  • Shenton ME, CC Dickey, M Frumin and RW McCarley (2001) A review of MRI findings in schizophrenia.Schizophr. Res. 49(1-2), 1–52.

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, CEL Stark and RE Clark (2004) The medial temporal lobe.Annu. Rev. Neurosci. 27, 279–306.

    Article  PubMed  CAS  Google Scholar 

  • Talamini LM, T Koch, GJ Ter Horst and J Korf (1998) Methylazoxymethanol acetate-induced abnormalities in the entorhinal cortex of the rat; parallels with morphological findings in schizophrenia.Brain Res. 789, 293–306.

    Article  PubMed  CAS  Google Scholar 

  • Talamini LM, B Ellenbroek, T Koch and J Korf (2000) Impaired sensory gating and attention in rats with developmental abnormalities of the mesocortex. Implications for schizophrenia.Ann. NYAcad. Sci. 911, 486–494.

    Article  CAS  Google Scholar 

  • Venables PH (1992) Hippocampal function and schizophrenia. Experimental psychological evidence. Ann.NY Acad. Sci. 658, 111–127.

    Article  CAS  Google Scholar 

  • Volk DW, MC Austin, JN Pierri, AR Sampson and DA Lewis (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical γ-aminobutyric acid neurons in subjects with schizophrenia.Arch. Gen. Psychiatry 57(3), 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Waddington JL, A Lane, C Larkin and E O’Callaghan (1999) The neurodevelopmental basis of schizophrenia: clinical clues from cerebro-craniofacial dysmorphogenesis, and the roots of a lifetime trajectory of disease.Biol. Psychiatry 46(1), 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Weiss AP, D Goff, DL Schacter, T Ditman, O Freudenreich, D Henderson and S Heckers (2006) Fronto-hippocampal function during temporal context monitoring in schizophrenia.Biol. Psychiatry 60, 1268–1277.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Grace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodge, D.J., Grace, A.A. Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia. neurotox res 14, 97–104 (2008). https://doi.org/10.1007/BF03033801

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033801

Keywords

Navigation