Skip to main content
Log in

Cannabinoid CB1 receptor-mediated inhibition of noradrenaline release in the human and guinea-pig hippocampus

  • Original article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We examined the question of whether cannabinoid receptors modulating noradrenaline release are detectable in the brain of humans and experimental animals. For this purpose, hippocampal slices from humans, guinea-pigs, rats and mice and cerebellar, cerebrocortical and hypothalamic slices from guinea-pigs were incubated with [3H]noradrenaline and then superfused. Tritium overflow was evoked either electrically (0.3 or 1Hz) or by introduction of Ca2+ ions (1.3μM) into Ca2+-free, K+-rich medium (25μM) containing tetrodotoxin 1μM. Furthermore, the cAMP accumulation stimulated by forskolin 10μM was determined in guinea-pig hippocampal membranes. We used the following drugs: the cannabinoid receptor agonists (–)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP-55,940) and R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone (WIN 55,212-2), the inactive S(–)-enantiomer of the latter (WIN 55,212-3) and the CB1 receptor antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR 141716). The electrically evoked tritium overflow from guinea-pig hippocampal slices was reduced by WIN 55,212-2 (pIC30% 6.5) but not affected by WIN 55,212-3 up to 10μM. The concentration-response curve of WIN 55,212-2 was shifted to the right by SR 141716 (0.032μM) (apparent pA2 8.2), which by itself did not affect the evoked overflow. WIN 55,212-2 1μM also inhibited the Ca2+-evoked tritium overflow in guinea-pig hippocampal slices and the electrically evoked overflow in guinea-pig cerebellar, cerebrocortical and hypothalamic slices as well as in human hippocampal slices but not in rat and mouse hippocampal slices. SR 141716 (0.32μM) markedly attenuated the WIN 55,212-2-induced inhibition in guinea-pig and human brain slices. SR 141716 0.32μM by itself increased the electrically evoked tritium overflow in guinea-pig hippocampal slices but failed to do so in slices from the other brain regions of the guinea-pig and in human hippocampal slices. The cAMP accumulation stimulated by forskolin was reduced by CP-55,940 and WIN 55,212-2. The concentration-response curve of CP 55,940 was shifted to the right by SR 141716 (0.1μM; apparent pA2 8.3), which by itself did not affect cAMP accumulation. In conclusion, cannabinoid receptors of the CB1 subtype occur in the human hippocampus, where they may contribute to the psychotropic effects of cannabis, and in the guinea-pig hippocampus, cerebellum, cerebral cortex and hypothalamus. The CB1 receptor in the guinea-pig hippocampus is located presynaptically, is activated by endogenous cannabinoids and may be negatively coupled to adenylyl cyclase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 5 June 1997 / Accepted: 6 August 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlicker, E., Timm, J., Zentner, J. et al. Cannabinoid CB1 receptor-mediated inhibition of noradrenaline release in the human and guinea-pig hippocampus. Naunyn-Schmiedeberg's Arch Pharmacol 356, 583–589 (1997). https://doi.org/10.1007/PL00005093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00005093

Navigation