Skip to main content

Advertisement

Log in

Progesterone exerts neuroprotective effects by inhibiting inflammatory response after stroke

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

We evaluated the inhibitory effects of progesterone (PROG) on inflammatory response and its influence on the structure of blood–brain barrier in a permanent model of stroke.

Material

One hundred and twenty adult male Sprague-Dawley rats were used in this study.

Treatments

PROG was dissolved in 22.5% 2-hydroxypropyl-bcyclodextrin and given in a dose of 15 mg/kg by intraperitoneal injection 1 h after permanent occlusion of middle cerebral artery (pMCAO). Additional injections of 15 mg/kg were administered subcutaneously 6, 24, and 48 h after pMCAO.

Methods

The expression of tumor necrosis factor-alpha (TNF-α) and claudin5 was measured by immunohistochemistry and western blot technique. Brain water content was determined by the dry–wet weight method.

Results

TNF-α were increased, but claudin5 were reduced in vehicle-treated rats after pMCAO. PROG-treated rats showed a substantial reduction in the expression of TNF-α compared to vehicle controls. In addition, there was significant increase in the expression of claudin5 in the pMCAO rats treated with PROG compared to vehicle. Examination of the water content of the brain also revealed that administration of PROG significantly attenuated the amount of water compared to vehicle in the ipsilateral hemispheres.

Conclusions

These data indicate that PROG is beneficial in this animal model, and may warrant further test in future clinical trials for human stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vagnerova K, Koerner IP, Hurn PD. Gender and the injured brain. Anesth Analg. 2008;107:201–14.

    Article  PubMed  Google Scholar 

  2. Vandromme M, Melton SM, Kerby JD. Progesterone in traumatic brain injury: time to move on to phase III trials. Crit Care. 2008;12:153.

    Article  PubMed  Google Scholar 

  3. Sayeed I, Wali B, Stein DG. Progesterone inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion. Restor Neurol Neurosci. 2007;25:151–9.

    PubMed  CAS  Google Scholar 

  4. Gibson CL, Murphy SP. Progesterone enhances functional recovery after middle cerebral artery occlusion in male mice. J Cereb Blood Flow Metab. 2004;24:805–13.

    Article  PubMed  CAS  Google Scholar 

  5. Gibson CL, Constantin D, Prior MJ, Bath PM, Murphy SP. Progesterone suppresses the inflammatory response and nitric oxide synthase-2 expression following cerebral ischemia. Exp Neurol. 2005;193:522–30.

    Article  PubMed  CAS  Google Scholar 

  6. Cai W, Zhu Y, Furuya K, Li Z, Sokabe M, Chen L. Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage. Neuropharmacology. 2008;55:127–38.

    Article  PubMed  CAS  Google Scholar 

  7. He J, Evans CO, Hoffman SW, Oyesiku NM, et al. Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol. 2004;189:404–12.

    Google Scholar 

  8. Wright DW, Bauer ME, Hoffman SW, Stein DG. Serum progesterone levels correlate with decreased cerebral edema after traumatic brain injury in male rats. J Neurotrauma. 2001;18:901–9.

    Article  PubMed  CAS  Google Scholar 

  9. Guo Q, Sayeed I, Baronne LM, Hoffman SW, Guennoun R, Stein DG. Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats. Exp Neurol. 2006;198:469–78.

    Article  PubMed  CAS  Google Scholar 

  10. Betz AL, Coester HC. Effect of steroids on edema and sodium uptake of the brain during focal ischemia in rats. Stroke. 1990;21:1199–204.

    PubMed  CAS  Google Scholar 

  11. Ueno M, Sakamoto H, Liao YJ, Onodera M, Huang CL, Miyanaka H, et al. Blood-brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats. Histochem Cell Biol. 2004;122:131–7.

    Article  PubMed  CAS  Google Scholar 

  12. Begley DJ, Brightman MW. Structural and functional aspects of the blood–brain barrier. Drug Res. 2003;61:39–78.

    CAS  Google Scholar 

  13. Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol. 2000;20:57–76.

    Article  PubMed  CAS  Google Scholar 

  14. Tsukita S, Furuse M. Overcoming barriers in the study of tight junction functions: from occludin to claudin. Genes Cells. 1998;3:569–73.

    Article  PubMed  CAS  Google Scholar 

  15. Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia. 2005;50:329–39.

    Article  PubMed  Google Scholar 

  16. Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19:34–41.

    Article  PubMed  CAS  Google Scholar 

  17. Gottschall PE, Yu X. Cytokines regulate gelatinase A and B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes. J Neurochem. 1995;64:1513–20.

    Article  PubMed  CAS  Google Scholar 

  18. Takaba H, Fukuda K, Yao H. Substrain differences, gender, and age of spontaneously hypertensive rats critically determine infarct size produced by distal middle cerebral artery occlusion. Cell Mol Neurobiol. 2004;24:589–98.

    Article  PubMed  Google Scholar 

  19. Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, et al. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke. 1994;25:1481–8.

    PubMed  CAS  Google Scholar 

  20. Hatashita S, Hoff JT. Role of blood–brain barrier permeability in focal ischemic brain edema. Adv Neurol. 1990;52:327–33.

    PubMed  CAS  Google Scholar 

  21. Xiao G, Wei J, Yan W, Wang W, Lu Z. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12:R61.

    Article  PubMed  Google Scholar 

  22. Cutler SM, Cekic M, Miller DM, Wali B, VanLandingham JW, Stein DG. Progesterone improves acute recovery after traumatic brain injury in the aged rat. J Neurotrauma. 2007;24:1475–86.

    Article  PubMed  Google Scholar 

  23. Gibson CL, Gray LJ, Bath PM, Murphy SP. Progesterone for the treatment of experimental brain injury; a systematic review. Brain. 2008;131:318–28.

    Article  PubMed  Google Scholar 

  24. Kumon Y, Kim SC, Tompkins P, Stevens A, Sakaki S, Loftus CM. Neuroprotective effect of postischemic administration of progesterone in spontaneously hypertensive rats with focal cerebral ischemia. J Neurosurg. 2000;92:848–52.

    Article  PubMed  CAS  Google Scholar 

  25. Galani R, Hoflhlan SW, Stein DG. Effeets of the duration of Progesterone treatment on the resolution of cerebrale edema induced by cortical contusion in rats. Neurosci. 2001;18:161–6.

    CAS  Google Scholar 

  26. Fisher M. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction. Rev Neurol Dis. 2008;5(Suppl 1):S4–11.

    PubMed  Google Scholar 

  27. de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, et al. The influence of cytokines on the integrity of the blood–brain barrier in vitro. J Neuroimmunol. 2007;64:37–43.

    Google Scholar 

  28. Dziewulska D, Mossakowski MJ. Cellular expression of tumor necrosis factor a and its receptors in human ischemic stroke. Clin Neuropathol. 2003;22:35–40.

    PubMed  CAS  Google Scholar 

  29. Nawashiro H, Martin D, Hallenbeck JM. Neuroprotective effects of TNF binding protein in focal cerebral ischemia. Brain Res. 1997;778:265–71.

    Article  PubMed  CAS  Google Scholar 

  30. Meistrell ME, Botchkina GI, Wang H. Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia. Shock. 1997;8:341–8.

    Article  PubMed  Google Scholar 

  31. Svedin P, Hagberg H, Sävman K, Zhu C, Mallard C. Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci. 2007;27:1511–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wang.

Additional information

Responsible Editor: I. Ahnfelt-Rønne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, C., Wang, J., Li, X. et al. Progesterone exerts neuroprotective effects by inhibiting inflammatory response after stroke. Inflamm. Res. 58, 619–624 (2009). https://doi.org/10.1007/s00011-009-0032-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0032-8

Keywords

Navigation