Skip to main content
Log in

The chondroprotective effects of ferulic acid on hydrogen peroxide-stimulated chondrocytes: inhibition of hydrogen peroxide-induced pro-inflammatory cytokines and metalloproteinase gene expression at the mRNA level

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The objective of the study is to evaluate the effect of ferulic acid (FA), an antioxidant from the Chinese herb Dong-Gui [Chinese angelica, Angelica sinensis (Oliv.) Diels], on the regulation of various genes in hydrogen peroxide-stimulated porcine chondrocytes at the mRNA level.

Methods

The effect of FA and the effective concentration of FA on porcine chondrocytes was evaluated by the lactate dehydrogenase, WST-1, crystal violet assay, and a chemical luminescence assay. Gene expression in hydrogen peroxide-stimulated chondrocytes either pre- or post-treated with FA was evaluated by real-time PCR.

Results

Chondrocytes pre-treated with 40 μM FA decreased the hydrogen peroxide-induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and MMP-1 and partially restored SOX9 gene expression. Post-treatment with 40 μM FA also decreased the expression of MMP-1 and MMP-13.

Conclusion

FA decreased the hydrogen peroxide-induced IL-1β, TNF-α, MMP-1 and MMP-13 and increased SOX9 gene expression. These findings suggest that FA may prove to be important in the treatment of osteoarthritis. Further research is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mankin HJ. The response for articular cartilage to mechanical injury. J Bone Joint Surg Am. 1982;64:460–6.

    CAS  PubMed  Google Scholar 

  2. Frenkel SR, Di Cesare PE. Degeneration and repair of articular cartilage. Front Biosci. 1999;4:671–85.

    Article  Google Scholar 

  3. Aigner T, Sachse A, Gebhard PM, Roach HI. Osteoarthritis: pathobiology targets and ways for therapeutic intervention. Adv Drug Deliv Rev. 2006;58:128–49.

    Article  CAS  PubMed  Google Scholar 

  4. Bubici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene. 2006;25:6731–48.

    Article  CAS  PubMed  Google Scholar 

  5. Tiku ML, Shah R, Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. J Biol Chem. 2000;275:20069–76.

    Article  CAS  PubMed  Google Scholar 

  6. Situnayake RD, Thurnham DI, Kootathep S, Chirico S, Lunec J, Davis M. Chain breaking antioxidant status rheumatoid arthritis: clinical and laboratory correlates. Ann Rheum Dis. 1992;50:81–6.

    Article  Google Scholar 

  7. Taysi S, Polat F, Gul M, Sari RA, Bakan E. Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int. 2002;21:200–4.

    Article  CAS  PubMed  Google Scholar 

  8. Henrotin Y, Deberg M, Christgau S, Henriksen D, Seidel L, Reginster JY. Type II collagen derived fragment is a new marker predictive of osteoarthritic progression. Osteoporos Int. 2002;13:S17.

    Google Scholar 

  9. Hedbom E, Häuselmann HJ. Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cell Mol Life Sci. 2002;59:45–53.

    Article  CAS  PubMed  Google Scholar 

  10. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007;74:324–9.

    Article  CAS  PubMed  Google Scholar 

  11. Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int. 2007;27:339–44.

    Article  CAS  PubMed  Google Scholar 

  12. Mathy-Hartert M, Hogge L, Sanchez C, Deby-Dupont G, Crielaard JM, Henrotin Y. Interleukin-1β and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthr Cartil. 2008;16:756–63.

    Article  CAS  PubMed  Google Scholar 

  13. Asada S, Fukuda K, Oh M, Hamanishi C, Tanaka S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm Res. 1999;48:399–403.

    Article  CAS  PubMed  Google Scholar 

  14. Schalkwijk J, van den Berg WB, van de Putte LBA, Joosten LAB. An experiment model for hydrogen peroxide-induced tissue damage. Arthritis Rheum. 1986;29:532–7.

    Article  CAS  PubMed  Google Scholar 

  15. Martin G, Andriamanalijaona R, Mathy-Hartert M, Henrotin Y, Pujol JP. Comparative effects of IL-1β and H2O2 on catabolic and anabolic gene expression in bovine chondrocyte. Osteoarthr Cartil. 2005;13:915–24.

    Article  CAS  PubMed  Google Scholar 

  16. Asada S, Fukuda K, Nishisaka F, Matsukawa M, Hamanisi C. Hydrogen peroxide induces apoptosis of chondrocytes; involvement of calcium ion and extracellular signal-regulated protein kinase. Inflamm Res. 2001;50:19–23.

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira Mendes A, Caramona MM, Carvalho AP, Lopes MC. Hydrogen peroxide mediates IL-1β-induced AP-1 activation in articular chondrocytes: implications for the regulation of iNOS expression. Cell Biol Toxicol. 2003;19:203–14.

    Article  CAS  PubMed  Google Scholar 

  18. Trombino S, Serini S, Dinicuolo F, Celleno L, Ando S, Picci N, et al. Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with tocopherol, carotene, and ascorbic acid. J Agric Food Chem. 2004;53:2411–20.

    Article  Google Scholar 

  19. Sudheer AR, Muthukumaran S, Kalpana C, Srinivasan M, Menon VP. Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes. Toxicol In Vitro. 2007;21:576–85.

    Article  CAS  PubMed  Google Scholar 

  20. Balasubashini MS, Rukkumani R, Viswanathan P, Menonl VP. Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother Res. 2004;18:310–4.

    Article  CAS  PubMed  Google Scholar 

  21. Chang CH, Liu CH, Chou CH, Lin FH. Gelatin/HA/C6S tri-copolymer as the scaffold for cartilage tissue engineering. Biomaterials. 2003;24:4853–8.

    Article  CAS  PubMed  Google Scholar 

  22. Saotome K, Mortia H, Umeda M. Cytotoxicity with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol In Vitro. 1989;3:317–21.

    Article  CAS  Google Scholar 

  23. Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol In Vitro. 1998;12:251–8.

    Article  CAS  Google Scholar 

  24. Gillies RJ, Didier N, Denton M. Determination of cell number in monolayer cultures. Anal Biochem. 1986;159:109–13.

    Article  CAS  PubMed  Google Scholar 

  25. Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheum. 2006;20:1003–25.

    Article  CAS  Google Scholar 

  26. Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators. Clin Orthop Relat Res. 2004;427S:S37–46.

    Article  Google Scholar 

  27. Shah R, Raska K, Tiku ML. The presence of molecular markers of in vivo lipid peroxidation in osteoarthritic cartilage. Arthritis Rheum. 2005;52:2799–807.

    Article  CAS  PubMed  Google Scholar 

  28. Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res Ther. 2002;4:157–64.

    CAS  Google Scholar 

  29. Lefebvre V, de Crombrugghe B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 1998;16:529–40.

    Article  CAS  PubMed  Google Scholar 

  30. Tew SR, Clegg PD, Brew CJ, Redmond CM, Hardingham TE. SOX9 transduction of a human chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in osteoarthritis. Arthritis Res Ther. 2007;9:R107.

    Article  PubMed  Google Scholar 

  31. Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39:237–46.

    CAS  PubMed  Google Scholar 

  32. Drissi H, Zuscik M, Rosier R, O’Keefe R. Transcriptional regulation of chondrocytes maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med. 2005;26:169–79.

    Article  CAS  PubMed  Google Scholar 

  33. Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes. Osteoarthr Cartil. 2005;13:643–54.

    Article  CAS  PubMed  Google Scholar 

  34. Henrotin YE, Bruckner P, Pujol JPL. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil. 2003;11:747–55.

    Article  CAS  PubMed  Google Scholar 

  35. Berenbaum F. Signaling transduction: target in osteoarthritis. Curr Opin Rheumatol. 2004;16:616–22.

    Article  PubMed  Google Scholar 

  36. Lo YYC, Conquer JA, Grinstein S, Cruz TF. Interleukin-1β induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species. J Cell Biochem. 1998;69:19–29.

    Article  CAS  PubMed  Google Scholar 

  37. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox-sensitive transcription factors. Cell Signal. 2002;13:879–97.

    Article  Google Scholar 

  38. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med. 2000;28:463–99.

    Article  CAS  PubMed  Google Scholar 

  39. Zákány R, Szíjgyártó Z, Matta C, Juhász T, Csortos C, Szucs K, et al. Hydrogen peroxide inhibits formation of cartilage in chicken micromass cultures and decreases the activity of calcineurin: implication of ERK1/2 and Sox9 pathways. Exp Cell Res. 2005;15:190–9.

    Article  Google Scholar 

  40. Lo YYC, Cruz TF. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem. 1995;20:11727–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Huei Lin.

Additional information

Responsible Editor: J. Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M.P., Yang, S.H., Chou, C.H. et al. The chondroprotective effects of ferulic acid on hydrogen peroxide-stimulated chondrocytes: inhibition of hydrogen peroxide-induced pro-inflammatory cytokines and metalloproteinase gene expression at the mRNA level. Inflamm. Res. 59, 587–595 (2010). https://doi.org/10.1007/s00011-010-0165-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0165-9

Keywords

Navigation