Skip to main content

Advertisement

Log in

GPR39: a Zn2+-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

GPR39 is a vertebrate G protein-coupled receptor related to the ghrelin/neurotensin receptor subfamily. The receptor is expressed in a range of tissues including the pancreas, gut/gastrointestinal tract, liver, kidney and in some regions of the brain. GPR39 was initially thought to be the cognitive receptor for the peptide hormone, obestatin. However, subsequent in vitro studies have failed to demonstrate binding of this peptide to the receptor. Zn2+ has been shown to be a potent stimulator of GPR39 activity via the Gαq, Gα12/13 and Gαs pathways. The potency and specificity of Zn2+ in activating GPR39 suggest it to be a physiologically important agonist. GPR39 is now emerging as an important transducer of autocrine and paracrine Zn2+ signals, impacting upon cellular processes such as insulin secretion, gastric emptying, neurotransmission and epithelial repair. This review focuses on the molecular, structural and biological properties of GPR39 and its various physiological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CRE:

cAMP response element

GI:

Gastrointestinal

GPCR:

G protein-coupled receptor

HNF-1α:

Hepatocyte nuclear factor-1α

HNF-4α:

Hepatocyte nuclear factor-4α

InsP3 :

Inositol triphosphate

IRS-2:

Insulin receptor substrate-2

LYPD1:

LY6/PLAUR domain-containing 1

NHE-1:

Na+/H+ exchanger-1

PLC:

Phospholipase C

SRE:

Serum response element

TM:

Transmembrane domain

References

  1. McKee KK, Tan CP, Palyha OC, Liu J, Feighner SD, Hreniuk DL, Smith RG, Howard AD, Van der Ploeg LHT (1997) Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Genomics 46:426–434

    Article  CAS  PubMed  Google Scholar 

  2. Feighner SD, Tan CP, McKee KK, Palyha OC, Hreniuk DL, Pong SS, Austin CP, Figueroa D, MacNeil D, Cascieri MA, Nargund R, Bakshi R, Abramovitz M, Stocco R, Kargman S, O’Neill G, Van Der Ploeg LHT, Evans J, Patchett AA, Smith RG, Howard AD (1999) Receptor for motilin identified in the human gastrointestinal system. Science 284:2184–2188

    Article  CAS  PubMed  Google Scholar 

  3. Dass NB, Hill J, Muir A, Testa T, Wise A, Sanger GJ (2003) The rabbit motilin receptor: molecular characterisation and pharmacology. Br J Pharmacol 140:948–954

    Article  CAS  PubMed  Google Scholar 

  4. Zhang JV, Ren PG, Avisian-Kretchmer O, Luo C-W, Rauch R, Klein C, Hsueh AJW (2005) Obestatin, a peptide encoded by the ghrelin gene, opposes Ghrelin’s effects on food intake. Science 310:996–999

    Article  CAS  PubMed  Google Scholar 

  5. Samson WK, White MM, Price C, Ferguson AV (2007) Obestatin acts in brain to inhibit thirst. Am J Physiol Regul Integr Comp Physiol 292:R637–R643

    CAS  PubMed  Google Scholar 

  6. Green BD, Irwin N, Flatt PR (2007) Direct and indirect effects of obestatin peptides on food intake and the regulation of glucose homeostasis and insulin secretion in mice. Peptides 28:981–987

    Article  CAS  PubMed  Google Scholar 

  7. Ren A-J, Guo Z-F, Wang Y-K, Wang L-G, Wang W-Z, Lin L, Zheng X, Yuan W-J (2008) Inhibitory effect of obestatin on glucose-induced insulin secretion in rats. Biochem Biophys Res Commun 369:969–972

    Article  CAS  PubMed  Google Scholar 

  8. Granata R, Settanni F, Gallo D, Trovato L, Biancone L, Cantaluppi V, Nano R, Annunziata M, Campiglia P, Arnoletti E, Ghè C, Volante M, Pappotti M, Muccioli G, Ghigo E (2008) Obestatin promotes survival of pancreatic β-cells and human islets and induces expression of genes involved in the regulation of β-cell mass and function. Diabetes 57:967–979

    Article  CAS  PubMed  Google Scholar 

  9. Holst B, Egerod KL, Schild E, Vickers SP, Cheetham S, Gerlach L-O, Storjohann L, Stidsen CE, Jones R, Beck-Sickinger AG, Schwartz TW (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148:13–20

    Article  CAS  PubMed  Google Scholar 

  10. Lauwers E, Landuyt B, Arckens L, Schoors L, Luyten W (2006) Obestatin does not activate orphan G protein-coupled receptor GPR39. Biochem Biophys Res Commun 351:21–25

    Article  CAS  PubMed  Google Scholar 

  11. Chartrel N, Alvear-Perez R, Leprince J, Iturrioz X, Reaux-Le Goazigo A, Audinot V, Chomarat P, Coge F, Nosjean O, Rodriguez M, Galizzi JP, Boutin JA, Vaudry H, Llorens-Cortes C (2007) Comment on “Obestatin, a peptide encoded by the ghrelin gene, opposes Ghrelin’s effects on food intake”. Science 351:766

    Article  Google Scholar 

  12. Zhang JV, Klein C, Ren P-G, Kass S, Ver Donck L, Moechars D, Hsueh AJW (2007) Response to comment on “Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake”. Science 315:766

    Article  CAS  Google Scholar 

  13. Zhang JV, Jahr H, Luo C-W, Klein C, Van Kolen K, Ver Donck L, De A, Baart E, Li J, Moechars D, Hsueh AJW (2005) Obestatin induction of early-response gene expression in the gastrointestinal and adipose tissues and the mediatory role of G protein-coupled receptor, GPR39. Mol Endocrinol 22:1464–1475

    Article  Google Scholar 

  14. Yasuda S-I, Miyazaki T, Munechika K, Yamashita M, Ikeda Y, Kamizono A (2007) Isolation of Zn2+ as an endogenous agonist of GPR39 from fetal bovine serum. J Recept Signal Transduct Res 27:235–246

    Article  CAS  PubMed  Google Scholar 

  15. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  CAS  PubMed  Google Scholar 

  16. Egerod KL, Holst B, Petersen PS, Hansen JB, Mulder J, Hökfelt T, Schwartz TW (2007) GPR39 splice variants versus antisense gene LYPD1: expression and regulation of gastrointestinal tract, endocrine pancreas, liver, and white adipose tissue. Mol Endocrinol 21:1685–1698

    Article  CAS  PubMed  Google Scholar 

  17. Iglesias MJ, Salgado A, Pineiro R, Rodino BK, Otero MF, Grigorian L, Gallego R, Dieguez C, Gualillo O, Gonzalez-Juanatey JR, Lago F (2007) Lack of effect of the ghrelin gene-derived peptide obestatin on cardiomyocyte viability and metabolism. J Endocrinol Invest 39:470–476

    Google Scholar 

  18. Camina JP, Campos JF, Caminos JE, Dieguez C, Casanueva FF (2007) Obestatin-mediated proliferation of human retinal pigment epithelial cells: regulatory mechanisms. J Cell Physiol 211:1–9

    Article  CAS  PubMed  Google Scholar 

  19. Catalán V, Gómez-Ambrosi J, Rotellar F, Silva C, Gil MJ, Rodríguez A, Cienfuegos JA, Salvador J, Frühbeck G (2007) The obestatin receptor (GPR39) is expressed in human adipose tissue and is down-regulated in obesity-associated type 2 diabetes mellitus. Clin Endocrinol 66:598–601

    Google Scholar 

  20. Fontenot E, Devente JE, Seidel ER (2007) Obestatin and ghrelin in obese and in pregnant women. Peptides 28:1937–1944

    Article  CAS  PubMed  Google Scholar 

  21. Metsuyanim S, Harari-Steinberg O, Buzhor E, Omer D, Pode Shakked N, Ben-Hur H, Halperin R, Schneider D, Dekel B (2009) Expression of stem cell markers in the human fetal kidney. PLoS One 4:e6709

    Article  PubMed  Google Scholar 

  22. Ezura Y, Sekiya I, Koga H, Muneta T, Noda M (2009) Methylation status of CpG islands in the promoter regions of signature genes during chondrogenesis of human synovium-derived mesenchymal stem cells. Arthritis Rheum 60:1416–1426

    Article  PubMed  Google Scholar 

  23. Rucinski M, Ziolkowska A, Tyczewska M, Malendowicz LK (2009) Expression of preproghrelin and related receptor genes in the rat adrenal gland and evidences that ghrelin exerts a potent stimulating effect on corticosterone secretion by cultured rat adrenocortical cells. Peptides 30:1448–1455

    Article  CAS  PubMed  Google Scholar 

  24. Nunes S, Nogueira-Silva C, Dias E, Moura RS, Correia-Pinto J (2008) Ghrelin and obestatin: different role in fetal lung development? Peptides 29:2150–2158

    Article  CAS  PubMed  Google Scholar 

  25. Moechars D, Depoortere I, Moreaux B, de Smet B, Goris I, Hoskens L, Daneels G, Kass S, Ver Donck L, Peeters T, Coulie B (2006) Altered gastrointestinal and metabolic function in the GPR39-obestatin receptor-knockout mouse. Gastroenterology 131:1131–1141

    Article  CAS  PubMed  Google Scholar 

  26. Besser L, Chorin E, Sekler I, Silverman WF, Atkin S, Russel JT, Hershfinkel M (2009) Synaptically released zinc triggers metabotropic signalling via a zinc-sensing receptor in the hippocampus. J Neurosci 29:2890–2901

    Article  CAS  PubMed  Google Scholar 

  27. Holst B, Egerod KL, Jin C, Petersen PS, Østergaard V, Hald J, Sprinkel AME, Størling J, Mandrup-Poulsen T, Holst JJ, Thams P, Ørskov C, Wierup N, Sundler F, Madsen OD, Schwartz TW (2009) G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology 150:2577–2585

    Article  CAS  PubMed  Google Scholar 

  28. Jackson VR, Nothacker H-P, Civelli O (2006) GPR39 receptor expression in the mouse brain. Neuroreport 17:813–816

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto I, Kimura N, Arai T, Tanaka M (2009) cDNA cloning and mRNA expression of bovine GPR39. J Vet Med Sci 71:641–644

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto I, Numao M, Sakaguchi Y, Tsushima N, Tanaka M (2007) Molecular characterisation of sequence and expression of chicken GPR39. Gen Comp Endocrinol 151:128–134

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto I, Sakaguchi Y, Numao M, Tsukada A, Tsushima N, Tanaka M (2007) Primary structure and tissue distribution of GPR39 messenger ribonucleic acid in Japanese quail, Coturnix japonica. Poult Sci 86:2472–2476

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Liu Y, Huang X, Liu X, Jiao B, Meng Z, Zhu P, Li S, Lin H, Cheng CHK (2008) Two alternatively spliced GPR39 transcripts in seabream: molecular cloning, genomic organization, and regulation of gene expression by metabolic signals. J Endocrinol 199:457–470

    Article  CAS  PubMed  Google Scholar 

  33. Dekel B, Metsuyanim S, Schmidt-Ott KM, Fridman E, Jacob-Hirsch J, Simon Am Pinthus J, Mor Y, Baraasch J, Amariglio N, Reisner Y, Kaminski N, Rechavi G (2006) Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer Res 66:6040–6049

    Article  CAS  PubMed  Google Scholar 

  34. Dickinson RE, Stewart AJ, Myers M, Millar RP, Duncan WC (2009) Differential expression and functional characterisation of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis. Endocrinology 150:2873–2881

    Google Scholar 

  35. Nag K, Sultana N, Kato A, Hirose S (2007) Headless splice variant acting as dominant negative calcitonin receptor. Biochem Biophys Res Commun 362:1037–1043

    Article  CAS  PubMed  Google Scholar 

  36. Cogé F, Guenin S-P, Renouard-Try A, rique H, Ouvry C, Fabry N, Beauverger P, Nicolas J-P, Galizzi J-P, Boutin JA, Canet E (1999) Truncated isoforms inhibit [3H]prazosin binding and cellular trafficking of native human α1A-adrenoreceptors. Biochem J 343:231–239

    Article  PubMed  Google Scholar 

  37. Richard F, Barroso S, Martinez J, Labbe-Jullie C, Kitabgi P (2001) Agonism, inverse agonism, and neutral antagonism at the constitutively active human neurotensin receptor 2. Mol Pharmacol 60:1392–1398

    CAS  PubMed  Google Scholar 

  38. Holst B, Cygankiewicz A, Halkjar JT, Ankersen M, Schwartz TW (2003) High constitutive signaling of the ghrelin receptor-identification of a potent inverse agonist. Mol Endocrinol 17:2201–2210

    Article  CAS  PubMed  Google Scholar 

  39. Holst B, Holliday ND, Bach A, Elling CE, Cox HM, Schwartz TW (2004) Common structural basis for constitutive activity of the ghrelin receptor family. J Biol Chem 279:53806–53817

    Article  CAS  PubMed  Google Scholar 

  40. Holst B, Nygaard R, Valentin-Hansen L, Bach A, Engelstoft MS, Petersen PS, Frimurer TM, Schwartz TW (2010) A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 285:3973–3985

    Article  CAS  PubMed  Google Scholar 

  41. Storjohann L, Holst B, Schwartz TW (2008) Molecular mechanism of Zn2+ agonism in the extracellular domain of GPR39. FEBS Lett 582:2583–2588

    Article  CAS  PubMed  Google Scholar 

  42. Bianchet MA, Odom EW, Vasta GR, Amzel LM (2002) A novel fucose recognition fold involved in innate immunity. Nat Struct Biol 9:628–634

    CAS  PubMed  Google Scholar 

  43. Sakon J, Irwin D, Wilson DB, Karplus PA (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4:810–818

    Article  CAS  PubMed  Google Scholar 

  44. Storjohann L, Holst B, Schwartz TW (2008) A second disulfide bridge from the N-terminal domain to extracellular loop-2 dampens receptor activity in GPR39. Biochemistry 47:9198–9207

    Article  CAS  PubMed  Google Scholar 

  45. Holliday ND, Holst B, Rodinova EA, Schwartz TW, Cox HM (2007) Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor. Mol Endocrinol 21:3100–3112

    Article  CAS  PubMed  Google Scholar 

  46. Rovati GE, Capra V, Neubig RR (2007) The highly conserved DRY motif of class A G protein-coupled receptors: Beyond the ground state. Mol Pharmacol 71:959–964

    Article  CAS  PubMed  Google Scholar 

  47. Tremblay F, Richard AM, Will S, Syed J, Stedman N, Perreault M, Gimeno RE (2009) Disruption of G protein-coupled receptor 39 impairs insulin secretion in vivo. Endocrinology 150:2586–2595

    Article  CAS  PubMed  Google Scholar 

  48. Schuppin GT, Pons S, Hügl S, Aiello LP, King GL, White M, Rhodes CJ (1998) A specific increased expression of insulin substrate 2 in pancreatic β-cell lines is involved in mediating serum-stimulated β-cell growth. Diabetes 47:1074–1085

    Article  CAS  PubMed  Google Scholar 

  49. Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF (1999) Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nat Genet 23:32–40

    CAS  PubMed  Google Scholar 

  50. Kido Y, Burks DJ, Withers D, Bruning JC, Kahn CR, White MF, Accili D (2000) Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 105:199–205

    Article  CAS  PubMed  Google Scholar 

  51. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiara N, Sasaki R, Mori K, Iwanaga T, Nagao M (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic β cells. J Biol Chem 277:19049–19055

    Article  CAS  PubMed  Google Scholar 

  52. Nasrin D, Larson CP, Sultana S, Khan TU (2005) Acceptability of and adherence to dispersible zinc tablet in the treatment of acute childhood diarrhoea. J Health Popul Nutr 23:215–221

    PubMed  Google Scholar 

  53. Azriel-Tamir H, Sharir H, Schwartz B, Hershfinkel M (2004) Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J Biol Chem 279:51804–51816

    Article  CAS  PubMed  Google Scholar 

  54. Hershfinkel M, Silverman WF, Sekler I (2007) The zinc sensing receptor, a link between zinc and cell signalling. Mol Med 13:331–336

    Article  CAS  PubMed  Google Scholar 

  55. Tremblay F, Perreault M, Klaman LD, Tobin JF, Smith E, Gimeno RE (2007) Normal food intake and body weight in mice lacking the G protein-coupled receptor GPR39. Endocrinology 148:501–506

    Article  CAS  PubMed  Google Scholar 

  56. De Smet B, Thijs T, Peeters TL, Depoortere I (2007) Effect of peripheral obestatin on gastric emptying and intestinal contractility in rodents. Neurogastroenterol Motil 19:211–217

    Article  PubMed  Google Scholar 

  57. Gourcerol G, Million M, Adelson DW, Wang Y, Wang L, Rivier J, St Pierre DH, Taché Y (2006) Lack of interaction between peripheral injection of CCK and obestatin in the regulation of gastric satiety signaling in rodents. Peptides 27:2811–2819

    Article  CAS  PubMed  Google Scholar 

  58. Nogueiras R, Pfluger P, Tovar S, Myrtha A, Mitchell S, Morris A, Perez-Tilve D, Vazquez MJ, Wiedmer P, Castaneda TR, Dimarchi R, Tschop M, Schurmann A, Joost HG, Williams LM, Langhans W, Dieguez C (2007) Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology 148:21–26

    Article  CAS  PubMed  Google Scholar 

  59. Frederickson CJ, Moncreiff DW (1994) Zinc-containing neurons. Biol Signals 3:127–139

    Article  CAS  PubMed  Google Scholar 

  60. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96:1716–1721

    Article  CAS  PubMed  Google Scholar 

  61. Qian J, Noebels JL (2005) Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J Physiol 566:747–758

    Article  CAS  PubMed  Google Scholar 

  62. Ketterman JK, Li YV (2008) Presynaptic evidence for zinc release at the mossy fiber synapse of rat hippocampus. J Neurosci Res 86:422–434

    Article  CAS  PubMed  Google Scholar 

  63. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc tranporter-3 knockout mice: a phenocopy for the synaptic memory deficits of Alzheimer’s disease. J Neurosci 30:1631–1636

    Article  CAS  PubMed  Google Scholar 

  64. Suh SW, Won SJ, Hamby AM, Yoo BH, Fan Y, Sheline CT, Tamano H, Takeda A, Liu J (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab 29:1579–1588

    Article  CAS  PubMed  Google Scholar 

  65. Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD (2000) Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res 39:153–169

    Article  CAS  PubMed  Google Scholar 

  66. Pories WJ, Henzel JH, Rob CG, Strain WH (1967) Acceleration of healing with zinc sulfate. Ann Surg 165:432–436

    Article  CAS  PubMed  Google Scholar 

  67. Sandstead HH, Lanier VC Jr, Shephard GH, Gillespie DD (1970) Zinc and wound healing: effects of zinc deficiency and zinc supplementation. Am J Clin Nutr 23:514–519

    CAS  PubMed  Google Scholar 

  68. Sharir H, Zinger A, Nevo A, Sekler I, Hershfinkel M (2010) Zn2+ released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem 285:26097–26106

    Google Scholar 

  69. Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 159:1087–1096

    Article  CAS  PubMed  Google Scholar 

  70. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popovics, P., Stewart, A.J. GPR39: a Zn2+-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell. Mol. Life Sci. 68, 85–95 (2011). https://doi.org/10.1007/s00018-010-0517-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0517-1

Keywords

Navigation