Skip to main content
Log in

Neurexins and neuroligins: synapses look out of the nervous system

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The scientific interest in the family of the so-called nervous vascular parallels has been growing steadily for the past 15 years, either by addition of new members to the group or, lately, by deepening the analysis of established concepts and mediators. Proteins governing both neurons and vascular cells are known to be involved in events such as cell fate determination and migration/guidance but not in the last and apparently most complex step of nervous system development, the formation and maturation of synapses. Hence, the recent addition to this family of the specific synaptic proteins, Neurexin and Neuroligin, is a double innovation. The two proteins, which were thought to be “simple” adhesive links between the pre- and post-synaptic sides of chemical synapses, are in fact extremely complex and modulate the most subtle synaptic activities. We will discuss the relevant data and the intriguing challenge of transferring synaptic activities to vascular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T, Picchioni M, Vassos E, Ettinger U, Bramon E, Murray R, Ruggeri M, Tosato S, Bonetto C, Steinberg S, Sigurdsson E, Sigmundsson T, Petursson H, Gylfason A, Olason PI, Hardarsson G, Jonsdottir GA, Gustafsson O, Fossdal R, Giegling I, Moller HJ, Hartmann AM, Hoffmann P, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Djurovic S, Melle I, Andreassen OA, Hansen T, Werge T, Kiemeney LA, Franke B, Veltman J, Buizer-Voskamp JE, Sabatti C, Ophoff RA, Rietschel M, Nothen MM, Stefansson K, Peltonen L, St Clair D, Stefansson H, Collier DA (2009) Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 18(5):988–996

    PubMed  CAS  Google Scholar 

  2. Lintas C, Persico AM (2009) Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. J Med Genet 46(1):1–8

    PubMed  CAS  Google Scholar 

  3. Wermter AK, Kamp-Becker I, Strauch K, Schulte-Korne G, Remschmidt H (2008) No evidence for involvement of genetic variants in the X-linked neuroligin genes NLGN3 and NLGN4X in probands with autism spectrum disorder on high functioning level. Am J Med Genet B Neuropsychiatr Genet 147B(4):535–537

    PubMed  Google Scholar 

  4. Ching MS, Shen Y, Tan WH, Jeste SS, Morrow EM, Chen X, Mukaddes NM, Yoo SY, Hanson E, Hundley R, Austin C, Becker RE, Berry GT, Driscoll K, Engle EC, Friedman S, Gusella JF, Hisama FM, Irons MB, Lafiosca T, LeClair E, Miller DT, Neessen M, Picker JD, Rappaport L, Rooney CM, Sarco DP, Stoler JM, Walsh CA, Wolff RR, Zhang T, Nasir RH, Wu BL (2010) Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am J Med Genet B Neuropsychiatr Genet 153B(4):937–947

    PubMed  CAS  Google Scholar 

  5. Gill M, Donohoe G, Corvin A (2010) What have the genomics ever done for the psychoses? Psychol Med 40(4):529–540

    PubMed  CAS  Google Scholar 

  6. Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911

    PubMed  Google Scholar 

  7. Huang ZJ, Scheiffele P (2008) GABA and neuroligin signaling: linking synaptic activity and adhesion in inhibitory synapse development. Curr Opin Neurobiol 18(1):77–83

    PubMed  CAS  Google Scholar 

  8. Bourgeron T (2007) The possible interplay of synaptic and clock genes in autism spectrum disorders. Cold Spring Harb Symp Quant Biol 72:645–654

    PubMed  CAS  Google Scholar 

  9. Pardo CA, Eberhart CG (2007) The neurobiology of autism. Brain Pathol 17(4):434–447

    PubMed  CAS  Google Scholar 

  10. Craig AM, Kang Y (2007) Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17(1):43–52

    PubMed  CAS  Google Scholar 

  11. Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC (1992) Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 257(5066):50–56

    PubMed  CAS  Google Scholar 

  12. Schmucker D, Chen B (2009) Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes Dev 23(2):147–156

    PubMed  CAS  Google Scholar 

  13. Ullrich B, Ushkaryov YA, Sudhof TC (1995) Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14(3):497–507

    PubMed  CAS  Google Scholar 

  14. Missler M, Sudhof TC (1998) Neurexins: three genes and 1001 products. Trends Genet 14(1):20–26

    PubMed  CAS  Google Scholar 

  15. Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Sudhof TC (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81(3):435–443

    PubMed  CAS  Google Scholar 

  16. Comoletti D, Flynn R, Jennings LL, Chubykin A, Matsumura T, Hasegawa H, Sudhof TC, Taylor P (2003) Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1beta. J Biol Chem 278(50):50497–50505

    PubMed  CAS  Google Scholar 

  17. Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6(7):708–716

    PubMed  CAS  Google Scholar 

  18. Baudouin S, Scheiffele P SnapShot: neuroligin-neurexin complexes. Cell 141 (5):908–908.e1

  19. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC (2005) A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48(2):229–236

    PubMed  CAS  Google Scholar 

  20. Chih B, Gollan L, Scheiffele P (2006) Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51(2):171–178

    PubMed  CAS  Google Scholar 

  21. Graf ER, Kang Y, Hauner AM, Craig AM (2006) Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci 26(16):4256–4265

    PubMed  CAS  Google Scholar 

  22. Comoletti D, Flynn RE, Boucard AA, Demeler B, Schirf V, Shi J, Jennings LL, Newlin HR, Sudhof TC, Taylor P (2006) Gene selection, alternative splicing, and post-translational processing regulate neuroligin selectivity for beta-neurexins. Biochemistry 45(42):12816–12827

    PubMed  CAS  Google Scholar 

  23. Koehnke J, Katsamba PS, Ahlsen G, Bahna F, Vendome J, Honig B, Shapiro L, Jin X (2010) Splice form dependence of beta-neurexin/neuroligin binding interactions. Neuron 67(1):61–74

    PubMed  CAS  Google Scholar 

  24. Philibert RA, Winfield SL, Sandhu HK, Martin BM, Ginns EI (2000) The structure and expression of the human neuroligin-3 gene. Gene 246(1–2):303–310

    PubMed  CAS  Google Scholar 

  25. Gilbert M, Smith J, Roskams AJ, Auld VJ (2001) Neuroligin 3 is a vertebrate gliotactin expressed in the olfactory ensheathing glia, a growth-promoting class of macroglia. Glia 34(3):151–164

    PubMed  CAS  Google Scholar 

  26. Occhi G, Rampazzo A, Beffagna G, Antonio Danieli G (2002) Identification and characterization of heart-specific splicing of human neurexin 3 mRNA (NRXN3). Biochem Biophys Res Commun 298(1):151–155

    PubMed  CAS  Google Scholar 

  27. Nelson GM, Padera TP, Garkavtsev I, Shioda T, Jain RK (2007) Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells. Neoplasia 9(12):1038–1045

    PubMed  CAS  Google Scholar 

  28. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100(19):10623–10628

    PubMed  CAS  Google Scholar 

  29. Suckow AT, Comoletti D, Waldrop MA, Mosedale M, Egodage S, Taylor P, Chessler SD (2008) Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology 149(12):6006–6017

    PubMed  CAS  Google Scholar 

  30. Bellen HJ, Lu Y, Beckstead R, Bhat MA (1998) Neurexin IV, caspr and paranodin–novel members of the neurexin family: encounters of axons and glia. Trends Neurosci 21(10):444–449

    PubMed  CAS  Google Scholar 

  31. Biswas S, Russell RJ, Jackson CJ, Vidovic M, Ganeshina O, Oakeshott JG, Claudianos C (2008) Bridging the synaptic gap: neuroligins and neurexin I in Apis mellifera. PLoS One 3(10):e3542

    PubMed  Google Scholar 

  32. Li J, Ashley J, Budnik V, Bhat MA (2007) Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55(5):741–755

    PubMed  CAS  Google Scholar 

  33. Tabuchi K, Sudhof TC (2002) Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 79(6):849–859

    PubMed  CAS  Google Scholar 

  34. Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W (2007) Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 581(13):2509–2516

    PubMed  CAS  Google Scholar 

  35. Banovic D, Khorramshahi O, Owald D, Wichmann C, Riedt T, Fouquet W, Tian R, Sigrist SJ, Aberle H (2010) Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. Neuron 66(5):724–738

    PubMed  CAS  Google Scholar 

  36. Sun M, Liu L, Zeng X, Xu M, Fang M, Xie W (2009) Genetic interaction between Neurexin and CAKI/CMG is important for synaptic function in Drosophila neuromuscular junction. Neurosci Res 64(4):362–371

    PubMed  CAS  Google Scholar 

  37. Tsubota T, Shiotsuki T (2010) Genomic analysis of carboxyl/cholinesterase genes in the silkworm Bombyx mori. BMC Genomics 11:377

    PubMed  Google Scholar 

  38. Missler M, Fernandez-Chacon R, Sudhof TC (1998) The making of neurexins. J Neurochem 71(4):1339–1347

    PubMed  CAS  Google Scholar 

  39. Bolliger MF, Pei J, Maxeiner S, Boucard AA, Grishin NV, Sudhof TC (2008) Unusually rapid evolution of Neuroligin-4 in mice. Proc Natl Acad Sci USA 105(17):6421–6426

    PubMed  CAS  Google Scholar 

  40. Davey C, Tallafuss A, Washbourne P (2010) Differential expression of neuroligin genes in the nervous system of zebrafish. Dev Dyn 239(2):703–714

    PubMed  CAS  Google Scholar 

  41. Rissone A, Monopoli M, Beltrame M, Bussolino F, Cotelli F, Arese M (2007) Comparative genome analysis of the neurexin gene family in Danio rerio: insights into their functions and evolution. Mol Biol Evol 24(1):236–252

    PubMed  CAS  Google Scholar 

  42. Rissone A, Sangiorgio L, Monopoli M, Beltrame M, Zucchi I, Bussolino F, Arese M, Cotelli F (2010) Characterization of the neuroligin gene family expression and evolution in zebrafish. Dev Dyn 239(2):688–702

    PubMed  CAS  Google Scholar 

  43. Rowen L, Young J, Birditt B, Kaur A, Madan A, Philipps DL, Qin S, Minx P, Wilson RK, Hood L, Graveley BR (2002) Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics 79(4):587–597

    PubMed  CAS  Google Scholar 

  44. Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  45. Gerrow K, El-Husseini A (2006) Cell adhesion molecules at the synapse. Front Biosci 11:2400–2419

    PubMed  CAS  Google Scholar 

  46. Dalva MB, McClelland AC, Kayser MS (2007) Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8(3):206–220

    PubMed  CAS  Google Scholar 

  47. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6):657–669

    PubMed  CAS  Google Scholar 

  48. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119(7):1013–1026

    PubMed  CAS  Google Scholar 

  49. Nam CI, Chen L (2005) Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci USA 102(17):6137–6142

    PubMed  CAS  Google Scholar 

  50. Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, Sudhof TC (2007) Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54(6):919–931

    PubMed  CAS  Google Scholar 

  51. Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307(5713):1324–1328

    PubMed  CAS  Google Scholar 

  52. Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, Sudhof TC (2003) Alpha-neurexins couple Ca2 + channels to synaptic vesicle exocytosis. Nature 423(6943):939–948

    PubMed  CAS  Google Scholar 

  53. Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang W, Sudhof TC, Brose N (2006) Neuroligins determine synapse maturation and function. Neuron 51(6):741–754

    PubMed  CAS  Google Scholar 

  54. Butz S, Okamoto M, Sudhof TC (1998) A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94(6):773–782

    PubMed  CAS  Google Scholar 

  55. Budreck EC, Scheiffele P (2007) Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 26(7):1738–1748

    PubMed  Google Scholar 

  56. Song JY, Ichtchenko K, Sudhof TC, Brose N (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 96(3):1100–1105

    PubMed  CAS  Google Scholar 

  57. Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci USA 101(38):13915–13920

    PubMed  CAS  Google Scholar 

  58. Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher SW, Betz H, Harvey RJ, Brose N, Zhang W, Varoqueaux F (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63(5):628–642

    PubMed  CAS  Google Scholar 

  59. Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2(4):240–250

    PubMed  CAS  Google Scholar 

  60. Heine M, Thoumine O, Mondin M, Tessier B, Giannone G, Choquet D (2008) Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts. Proc Natl Acad Sci USA 105(52):20947–20952

    PubMed  CAS  Google Scholar 

  61. Ehrlich I, Malinow R (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 24(4):916–927

    PubMed  CAS  Google Scholar 

  62. de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN, Yates JR 3rd, Comoletti D, Taylor P, Ghosh A (2009) LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64(6):799–806

    PubMed  Google Scholar 

  63. Ko J, Fuccillo MV, Malenka RC, Sudhof TC (2009) LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64(6):791–798

    PubMed  CAS  Google Scholar 

  64. Stan A, Pielarski KN, Brigadski T, Wittenmayer N, Fedorchenko O, Gohla A, Lessmann V, Dresbach T, Gottmann K (2010) Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci USA 107(24):11116–11121

    PubMed  CAS  Google Scholar 

  65. Wittenmayer N, Korber C, Liu H, Kremer T, Varoqueaux F, Chapman ER, Brose N, Kuner T, Dresbach T (2009) Postsynaptic Neuroligin1 regulates presynaptic maturation. Proc Natl Acad Sci USA 106(32):13564–13569

    PubMed  CAS  Google Scholar 

  66. Schapitz IU, Behrend B, Pechmann Y, Lappe-Siefke C, Kneussel SJ, Wallace KE, Stempel AV, Buck F, Grant SG, Schweizer M, Schmitz D, Schwarz JR, Holzbaur EL, Kneussel M Neuroligin 1 is dynamically exchanged at postsynaptic sites. J Neurosci 30(38):12733–12744

  67. Thyagarajan A, Ting AY (2010) Imaging activity-dependent regulation of neurexin-neuroligin interactions using trans-synaptic enzymatic biotinylation. Cell 143(3):456–469

    PubMed  CAS  Google Scholar 

  68. Dean C, Dresbach T (2006) Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29(1):21–29

    PubMed  CAS  Google Scholar 

  69. Geschwind DH (2009) Autism: the ups and downs of neuroligin. Biol Psychiatry 66(10):904–905

    PubMed  Google Scholar 

  70. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29

    PubMed  CAS  Google Scholar 

  71. Feng J (2006) High frequency of neurexin 1[beta] signal peptide structural variants in patients with autism. Neurosci Lett 409:10–13

    PubMed  CAS  Google Scholar 

  72. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, Vincent JB, Skaug JL, Thompson AP, Senman L, Feuk L, Qian C, Bryson SE, Jones MB, Marshall CR, Scherer SW, Vieland VJ, Bartlett C, Mangin LV, Goedken R, Segre A, Pericak-Vance MA, Cuccaro ML, Gilbert JR, Wright HH, Abramson RK, Betancur C, Bourgeron T, Gillberg C, Leboyer M, Buxbaum JD, Davis KL, Hollander E, Silverman JM, Hallmayer J, Lotspeich L, Sutcliffe JS, Haines JL, Folstein SE, Piven J, Wassink TH, Sheffield V, Geschwind DH, Bucan M, Brown WT, Cantor RM, Constantino JN, Gilliam TC, Herbert M, Lajonchere C, Ledbetter DH, Lese-Martin C, Miller J, Nelson S, Samango-Sprouse CA, Spence S, State M, Tanzi RE, Coon H, Dawson G, Devlin B, Estes A, Flodman P, Klei L, McMahon WM, Minshew N, Munson J, Korvatska E, Rodier PM, Schellenberg GD, Smith M, Spence MA, Stodgell C, Tepper PG, Wijsman EM, Yu CE, Roge B, Mantoulan C, Wittemeyer K, Poustka A, Felder B, Klauck SM, Schuster C, Poustka F, Bolte S, Feineis-Matthews S, Herbrecht E, Schmotzer G, Tsiantis J, Papanikolaou K, Maestrini E, Bacchelli E, Blasi F, Carone S, Toma C, Van Engeland H, de Jonge M, Kemner C, Koop F, Langemeijer M, Hijmans C, Staal WG, Baird G, Bolton PF, Rutter ML, Weisblatt E, Green J, Aldred C, Wilkinson JA, Pickles A, Le Couteur A, Berney T, McConachie H, Bailey AJ, Francis K, Honeyman G, Hutchinson A, Parr JR, Wallace S, Monaco AP, Barnby G, Kobayashi K, Lamb JA, Sousa I, Sykes N, Cook EH, Guter SJ, Leventhal BL, Salt J, Lord C, Corsello C, Hus V, Weeks DE, Volkmar F, Tauber M, Fombonne E, Shih A, Meyer KJ (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39(3):319–328

    PubMed  CAS  Google Scholar 

  73. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, Lally E, Weiss LA, Najm J, Kutsche K, Descartes M, Holt L, Braddock S, Troxell R, Kaplan L, Volkmar F, Klin A, Tsatsanis K, Harris DJ, Noens I, Pauls DL, Daly MJ, MacDonald ME, Morton CC, Quade BJ, Gusella JF (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82(1):199–207

    PubMed  CAS  Google Scholar 

  74. Comoletti D, De Jaco A, Jennings LL, Flynn RE, Gaietta G, Tsigelny I, Ellisman MH, Taylor P (2004) The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci 24(20):4889–4893

    PubMed  CAS  Google Scholar 

  75. De Jaco A, Comoletti D, Kovarik Z, Gaietta G, Radic Z, Lockridge O, Ellisman MH, Taylor P (2006) A mutation linked with autism reveals a common mechanism of endoplasmic reticulum retention for the alpha, beta-hydrolase fold protein family. J Biol Chem 281(14):9667–9676

    PubMed  Google Scholar 

  76. Shima DT, Mailhos C (2000) Vascular developmental biology: getting nervous. Curr Opin Genet Dev 10(5):536–542

    PubMed  CAS  Google Scholar 

  77. Carmeliet P (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 4(9):710–720

    PubMed  CAS  Google Scholar 

  78. Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Carmeliet P (2009) The neurovascular link in health and disease: an update. Trends Mol Med 15(10):439–451

    PubMed  CAS  Google Scholar 

  79. Melani M, Weinstein BM (2010) Common factors regulating patterning of the nervous and vascular systems. Annu Rev Cell Dev Biol 26:639–665

    PubMed  CAS  Google Scholar 

  80. Bottos A, Destro E, Rissone A, Graziano S, Cordara G, Assenzio B, Cera MR, Mascia L, Bussolino F, Arese M (2009) The synaptic proteins neurexins and neuroligins are widely expressed in the vascular system and contribute to its functions. Proc Natl Acad Sci USA 106(49):20782–20787

    PubMed  CAS  Google Scholar 

  81. Girard H (1973) Arterial pressure in the chick embryo. Am J Physiol 224(2):454–460

    PubMed  CAS  Google Scholar 

  82. Hynes RO (1999) Cell adhesion: old and new questions. Trends Cell Biol 9(12):M33–M37

    PubMed  CAS  Google Scholar 

  83. Woolfrey KM, Srivastava DP, Photowala H, Yamashita M, Barbolina MV, Cahill ME, Xie Z, Jones KA, Quilliam LA, Prakriya M, Penzes P (2009) Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nat Neurosci 12(10):1275–1284

    Google Scholar 

  84. Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki J, Seino S (2007) Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 104(49):19333–19338

    PubMed  CAS  Google Scholar 

  85. Lowenstein CJ, Morrell CN, Yamakuchi M (2005) Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med 15(8):302–308

    PubMed  CAS  Google Scholar 

  86. Sugita S (2001) A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 154:435–445

    PubMed  CAS  Google Scholar 

  87. Moiseeva EP (2001) Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 52(3):372–386

    PubMed  CAS  Google Scholar 

  88. Munaron L, Fiorio Pla A (2009) Endothelial calcium machinery and angiogenesis: understanding physiology to interfere with pathology. Curr Med Chem 16(35):4691–4703

    PubMed  CAS  Google Scholar 

  89. Xu J, Xiao N, Xia J (2010) Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat Neurosci 13(1):22–24

    PubMed  CAS  Google Scholar 

  90. Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD (2009) Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer 9(3):182–194

    PubMed  CAS  Google Scholar 

  91. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84(3):869–901

    PubMed  CAS  Google Scholar 

  92. Irie M (1997) Binding of neuroligins to PSD-95. Science 277:1511–1515

    PubMed  CAS  Google Scholar 

  93. Hata Y, Butz S, Sudhof TC (1996) CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci 16(8):2488–2494

    PubMed  CAS  Google Scholar 

  94. Kashiwagi S, Izumi Y, Gohongi T, Demou ZN, Xu L, Huang PL, Buerk DG, Munn LL, Jain RK, Fukumura D (2005) NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest 115(7):1816–1827

    PubMed  CAS  Google Scholar 

  95. Kashiwagi S, Tsukada K, Xu L, Miyazaki J, Kozin SV, Tyrrell JA, Sessa WC, Gerweck LE, Jain RK, Fukumura D (2008) Perivascular nitric oxide gradients normalize tumor vasculature. Nat Med 14(3):255–257

    PubMed  CAS  Google Scholar 

  96. Jing-Ping Z, Tian QB, Sakagami H, Kondo H, Endo S, Suzuki T (2005) p55 protein is a member of PSD scaffold proteins in the rat brain and interacts with various PSD proteins. Brain Res Mol Brain Res 135(1–2):204–216

    PubMed  Google Scholar 

  97. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nature Rev Cancer 6:521–534

    CAS  Google Scholar 

  98. Nikonenko I, Boda B, Steen S, Knott G, Welker E, Muller D (2008) PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling. J Cell Biol 183(6):1115–1127

    PubMed  CAS  Google Scholar 

  99. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and [alpha]1-syntrophin mediated by PDZ domains. Cell 84(5):757–767

    PubMed  CAS  Google Scholar 

  100. Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5(12):952–962

    PubMed  CAS  Google Scholar 

  101. Ko J, Zhang C, Arac D, Boucard AA, Brunger AT, Sudhof TC (2009) Neuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation. EMBO J 28(20):3244–3255

    PubMed  CAS  Google Scholar 

  102. Glebova NO, Ginty DD (2005) Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci 28:191–222

    PubMed  CAS  Google Scholar 

  103. Burnstock G (2008) Non-synaptic transmission at autonomic neuroeffector junctions. Neurochem Int 52(1–2):14–25

    PubMed  CAS  Google Scholar 

  104. Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT (1992) Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab 12(1):110–119

    PubMed  CAS  Google Scholar 

  105. Van der Borght K, Kobor-Nyakas DE, Klauke K, Eggen BJ, Nyakas C, Van der Zee EA, Meerlo P (2009) Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 19(10):928–936

    PubMed  Google Scholar 

  106. Haberman RP, Lee HJ, Colantuoni C, Koh MT, Gallagher M (2008) Rapid encoding of new information alters the profile of plasticity-related mRNA transcripts in the hippocampal CA3 region. Proc Natl Acad Sci USA 105(30):10601–10606

    PubMed  CAS  Google Scholar 

  107. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13(5):543–550

    PubMed  CAS  Google Scholar 

  108. Drake CT, Iadecola C (2007) The role of neuronal signaling in controlling cerebral blood flow. Brain Lang 102(2):141–152

    PubMed  Google Scholar 

  109. Maynard EA, Schultz RL, Pease DC (1957) Electron microscopy of the vascular bed of rat cerebral cortex. Am J Anat 100(3):409–433

    PubMed  CAS  Google Scholar 

  110. Allsopp G, Gamble HJ (1979) An electron microscopic study of the pericytes of the developing capillaries in human fetal brain and muscle. J Anat 128(Pt 1):155–168

    PubMed  CAS  Google Scholar 

  111. Vaucher E, Tong XK, Cholet N, Lantin S, Hamel E (2000) GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow. J Comp Neurol 421(2):161–171

    PubMed  CAS  Google Scholar 

  112. Jones EG (1970) On the mode of entry of blood vessels into the cerebral cortex. J Anat 106(Pt 3):507–520

    PubMed  CAS  Google Scholar 

  113. von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629

    Google Scholar 

  114. Ohnishi T, Matsuda H, Hashimoto T, Kunihiro T, Nishikawa M, Uema T, Sasaki M (2000) Abnormal regional cerebral blood flow in childhood autism. Brain 123(Pt 9):1838–1844

    PubMed  Google Scholar 

  115. Zilbovicius M, Boddaert N, Belin P, Poline JB, Remy P, Mangin JF, Thivard L, Barthelemy C, Samson Y (2000) Temporal lobe dysfunction in childhood autism: a PET study. Positron emission tomography. Am J Psychiatry 157(12):1988–1993

    PubMed  CAS  Google Scholar 

  116. Gendry Meresse I, Zilbovicius M, Boddaert N, Robel L, Philippe A, Sfaello I, Laurier L, Brunelle F, Samson Y, Mouren MC, Chabane N (2005) Autism severity and temporal lobe functional abnormalities. Ann Neurol 58(3):466–469

    PubMed  Google Scholar 

  117. Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5(4):261–270

    PubMed  CAS  Google Scholar 

  118. Aird WC (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 98(2):159–162

    PubMed  CAS  Google Scholar 

  119. Vestweber D (2002) Regulation of endothelial cell contacts during leukocyte extravasation. Curr Opin Cell Biol 14(5):587–593

    PubMed  CAS  Google Scholar 

  120. Sumita K, Sato Y, Iida J, Kawata A, Hamano M, Hirabayashi S, Ohno K, Peles E, Hata Y (2007) Synaptic scaffolding molecule (S-SCAM) membrane-associated guanylate kinase with inverted organization (MAGI)-2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons. J Neurochem 100(1):154–166

    PubMed  CAS  Google Scholar 

  121. Comoletti D, Miller MT, Jeffries CM, Wilson J, Demeler B, Taylor P, Trewhella J, Nakagawa T (2010) The macromolecular architecture of extracellular domain of alphaNRXN1: domain organization, flexibility, and insights into trans-synaptic disposition. Structure 18(8):1044–1053

    PubMed  CAS  Google Scholar 

  122. Comoletti D, Grishaev A, Whitten AE, Tsigelny I, Taylor P, Trewhella J (2007) Synaptic arrangement of the neuroligin/beta-neurexin complex revealed by X-ray and neutron scattering. Structure 15(6):693–705

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Anna Gualandris for carefully reading the manuscript. This work was supported in part by grant of the Italian Association for Cancer Research (AIRC); Regione Piemonte (Finalized Health Research 2006, 2008 and 2009; Industrial Research and Precompetitive Development 2006: grants PRESTO and SPLASERBA; Technological Platforms for Biotechnology: grant DRUIDI; Converging Technologies: grant PHOENICS; Industrial Research 2009: grants BANP and eLab) CRT Foundation, and Italian Ministry of Health (Oncological Research Program 2006; Finalized Research 2006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Federico Bussolino or Marco Arese.

Additional information

F. Bussolino and M. Arese equally contributed in the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottos, A., Rissone, A., Bussolino, F. et al. Neurexins and neuroligins: synapses look out of the nervous system. Cell. Mol. Life Sci. 68, 2655–2666 (2011). https://doi.org/10.1007/s00018-011-0664-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0664-z

Keywords

Navigation