Skip to main content

Advertisement

Log in

Control of energy homeostasis by amylin

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Amylin is an important control of nutrient fluxes because it reduces energy intake, modulates nutrient utilization by inhibiting postprandial glucagon secretion, and increases energy disposal by preventing compensatory decreases of energy expenditure in weight-reduced individuals. The best investigated function of amylin which is cosecreted with insulin is to reduce eating by promoting meal-ending satiation. This effect is thought to be mediated by a stimulation of specific amylin receptors in the area postrema. Secondary brain sites to mediate amylin action include the nucleus of the solitary tract and the lateral parabrachial nucleus, which convey the neural signal to the lateral hypothalamic area and other hypothalamic nuclei. Amylin may also signal adiposity because plasma levels of amylin are increased in adiposity and because higher amylin concentrations in the brain result in reduced body weight gain and adiposity, while amylin receptor antagonists increase body adiposity. The central mechanisms involved in amylin’s effect on energy expenditure are much less known. A series of recent experiments in animals and humans indicate that amylin is a promising option for anti-obesity therapy especially in combination with other hormones. The most extensive dataset is available for the combination therapy of amylin and leptin. Ongoing research focuses on the mechanisms of these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Young A, Denaro M (1998) Roles of amylin in diabetes and in regulation of nutrient load. Nutrition 14(6):524–527 (pii:S0899900798000446)

    Article  PubMed  CAS  Google Scholar 

  2. Potes CS, Lutz TA (2010) Brainstem mechanisms of amylin-induced anorexia. Physiol Behav 100(5):511–518. doi:10.1016/j.physbeh.2010.03.001

    Article  PubMed  CAS  Google Scholar 

  3. Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, Main MJ, Foord SM, Sexton PM (1999) Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 56(1):235–242

    PubMed  CAS  Google Scholar 

  4. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393(6683):333–339. doi:10.1038/30666

    Article  PubMed  CAS  Google Scholar 

  5. Muff R, Buhlmann N, Fischer JA, Born W (1999) An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology 140(6):2924–2927

    Article  PubMed  CAS  Google Scholar 

  6. Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 67(5):1655–1665. doi:10.1124/mol.104.008615

    Article  PubMed  CAS  Google Scholar 

  7. Morfis M, Tilakaratne N, Furness SG, Christopoulos G, Werry TD, Christopoulos A, Sexton PM (2008) Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology 149(11):5423–5431. doi:10.1210/en.2007-1735

    Article  PubMed  CAS  Google Scholar 

  8. Fischer JA, Muff R, Born W (2002) Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs). Biochem Soc Trans 30(4):455–460. doi:10.1042/BST0300455

    Article  PubMed  CAS  Google Scholar 

  9. Becskei C, Riediger T, Zund D, Wookey P, Lutz TA (2004) Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res 1030(2):221–233. doi:10.1016/j.brainres.2004.10.012

    Article  PubMed  CAS  Google Scholar 

  10. Ueda T, Ugawa S, Saishin Y, Shimada S (2001) Expression of receptor-activity modifying protein (RAMP) mRNAs in the mouse brain. Brain Res Mol Brain Res 93(1):36–45 (pii: S0169328X01001796)

    Article  PubMed  CAS  Google Scholar 

  11. Barth SW, Riediger T, Lutz TA, Rechkemmer G (2004) Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res 997(1):97–102

    Article  PubMed  CAS  Google Scholar 

  12. Sexton PM, Paxinos G, Kenney MA, Wookey PJ, Beaumont K (1994) In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 62(2):553–567. doi:10.1016/0306-4522(94)90388-3

    Article  PubMed  CAS  Google Scholar 

  13. Lutz TA (2010) The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol 298(6):R1475–R1484. doi:10.1152/ajpregu.00703.2009

    Article  PubMed  CAS  Google Scholar 

  14. Geary N (2005) A new way of looking at eating. Am J Physiol Regul Integr Comp Physiol 288(6):R1444–R1446. doi:10.1152/ajpregu.00066.2005

    Article  PubMed  CAS  Google Scholar 

  15. Lutz TA, Geary N (2008) Gastrointestinal factors in appetite and food research–animal research. In: Harris R, Mattes R (eds) Appetite and food intake: behavioral and physiological consideration. CRC Press, Boca Raton, pp 163–186

    Chapter  Google Scholar 

  16. Butler PC, Chou J, Carter WB, Wang YN, Bu BH, Chang D, Chang JK, Rizza RA (1990) Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 39(6):752–756

    Article  PubMed  CAS  Google Scholar 

  17. Lutz TA (2006) Amylinergic control of food intake. Physiol Behav 89(4):465–471. doi:10.1016/j.physbeh.2006.04.001

    Article  PubMed  CAS  Google Scholar 

  18. Arnelo U, Reidelberger R, Adrian TE, Larsson J, Permert J (1998) Sufficiency of postprandial plasma levels of islet amyloid polypeptide for suppression of feeding in rats. Am J Physiol 275(5 Pt 2):R1537–R1542

    PubMed  CAS  Google Scholar 

  19. Mollet A, Meier S, Grabler V, Gilg S, Scharrer E, Lutz TA (2003) Endogenous amylin contributes to the anorectic effects of cholecystokinin and bombesin. Peptides 24(1):91–98

    Article  PubMed  CAS  Google Scholar 

  20. Roth JD, Coffey T, Jodka CM, Maier H, Athanacio JR, Mack CM, Weyer C, Parkes DG (2007) Combination therapy with amylin and peptide YY[3–36] in obese rodents: anorexigenic synergy and weight loss additivity. Endocrinology 148(12):6054–6061. doi:10.1210/en.2007-0898

    Article  PubMed  CAS  Google Scholar 

  21. Trevaskis JL, Turek VF, Griffin PS, Wittmer C, Parkes DG, Roth JD (2010) Multi-hormonal weight loss combinations in diet-induced obese rats: therapeutic potential of cholecystokinin? Physiol Behav 100(2):187–195. doi:10.1016/j.physbeh.2010.02.023

    Article  PubMed  CAS  Google Scholar 

  22. Gebre-Medhin S, Mulder H, Pekny M, Westermark G, Tornell J, Westermark P, Sundler F, Ahren B, Betsholtz C (1998) Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem Biophys Res Commun 250(2):271–277. doi:10.1006/bbrc.1998.9308

    Article  PubMed  CAS  Google Scholar 

  23. Devine E, Young AA (1998) Weight gain in male and female mice with amylin gene knockout. Diabetes 47:A317

    Google Scholar 

  24. Lutz TA (2005) Pancreatic amylin as a centrally acting satiating hormone. Curr Drug Targets 6(2):181–189

    PubMed  CAS  Google Scholar 

  25. Reidelberger RD, Haver AC, Arnelo U, Smith DD, Schaffert CS, Permert J (2004) Amylin receptor blockade stimulates food intake in rats. Am J Physiol Regul Integr Comp Physiol 287(3):R568–R574. doi:10.1152/ajpregu.00213.2004

    Article  PubMed  CAS  Google Scholar 

  26. Rushing PA, Hagan MM, Seeley RJ, Lutz TA, D’Alessio DA, Air EL, Woods SC (2001) Inhibition of central amylin signaling increases food intake and body adiposity in rats. Endocrinology 142(11):5035

    Article  PubMed  CAS  Google Scholar 

  27. Mollet A, Gilg S, Riediger T, Lutz TA (2004) Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol Behav 81(1):149–155. doi:10.1016/j.physbeh.2004.01.006

    Article  PubMed  CAS  Google Scholar 

  28. Lutz TA, Geary N, Szabady MM, Del Prete E, Scharrer E (1995) Amylin decreases meal size in rats. Physiol Behav 58(6):1197–1202

    Article  PubMed  CAS  Google Scholar 

  29. Morley JE, Suarez MD, Mattamal M, Flood JF (1997) Amylin and food intake in mice: effects on motivation to eat and mechanism of action. Pharmacol Biochem Behav 56(1):123–129. doi:10.1016/S0091-3057(96)00168-2

    Article  PubMed  CAS  Google Scholar 

  30. Mack C, Wilson J, Athanacio J, Reynolds J, Laugero K, Guss S, Vu C, Roth J, Parkes D (2007) Pharmacological actions of the peptide hormone amylin in the long-term regulation of food intake, food preference, and body weight. Am J Physiol Regul Integr Comp Physiol 293(5):R1855–R1863. doi:10.1152/ajpregu.00297.2007

    Article  PubMed  CAS  Google Scholar 

  31. Mack CM, Soares CJ, Wilson JK, Athanacio JR, Turek VF, Trevaskis JL, Roth JD, Smith PA, Gedulin B, Jodka CM, Roland BL, Adams SH, Lwin A, Herich J, Laugero KD, Vu C, Pittner R, Paterniti JR Jr, Hanley M, Ghosh S, Parkes DG (2010) Davalintide (AC2307), a novel amylin-mimetic peptide: enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int J Obes (Lond) 34(2):385–395. doi:10.1038/ijo.2009.238

    Article  CAS  Google Scholar 

  32. Lutz TA, Senn M, Althaus J, Del Prete E, Ehrensperger F, Scharrer E (1998) Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 19(2):309–317

    Article  PubMed  CAS  Google Scholar 

  33. Fry M, Hoyda TD, Ferguson AV (2007) Making sense of it: roles of the sensory circumventricular organs in feeding and regulation of energy homeostasis. Exp Biol Med (Maywood) 232(1):14–26 (pii: 232/1/14)

    CAS  Google Scholar 

  34. Lutz TA, Althaus J, Rossi R, Scharrer E (1998) Anorectic effect of amylin is not transmitted by capsaicin-sensitive nerve fibers. Am J Physiol 274(6 Pt 2):R1777–R1782

    PubMed  CAS  Google Scholar 

  35. Lutz TA, Del Prete E, Scharrer E (1994) Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol Behav 55(5):891–895

    Article  PubMed  CAS  Google Scholar 

  36. Lutz TA, Del Prete E, Scharrer E (1995) Subdiaphragmatic vagotomy does not influence the anorectic effect of amylin. Peptides 16(3):457–462

    Article  PubMed  CAS  Google Scholar 

  37. Lutz TA, Mollet A, Rushing PA, Riediger T, Scharrer E (2001) The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/nucleus of the solitary tract (AP/NTS) lesioned rats. Int J Obes Relat Metab Disord 25(7):1005–1011. doi:10.1038/sj.ijo.0801664

    Article  PubMed  CAS  Google Scholar 

  38. Morley JE, Flood JF, Horowitz M, Morley PM, Walter MJ (1994) Modulation of food intake by peripherally administered amylin. Am J Physiol 267(1 Pt 2):R178–R184

    PubMed  CAS  Google Scholar 

  39. Potes CS, Riediger T, Lutz TA (2010) Amylin induces ERK 1/2 phosphorylation in structures of the AP/NTS-LPB-Ce-BSTL axis. Appetite 54(3):670. doi:10.1016/j.appet.2010.04.164

    Article  Google Scholar 

  40. Riediger T, Schmid HA, Lutz T, Simon E (2001) Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP. Am J Physiol Regul Integr Comp Physiol 281(6):R1833–R1843

    PubMed  CAS  Google Scholar 

  41. Riediger T, Schmid HA, Lutz TA, Simon E (2002) Amylin and glucose co-activate area postrema neurons of the rat. Neurosci Lett 328(2):121–124

    Article  PubMed  CAS  Google Scholar 

  42. Riediger T, Zuend D, Becskei C, Lutz TA (2004) The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis. Am J Physiol Regul Integr Comp Physiol 286(1):R114–R122. doi:10.1152/ajpregu.00333.2003

    Article  PubMed  CAS  Google Scholar 

  43. Potes CS, Boyle CN, Riediger T, Lutz TA (in press) Involvement of the extracellular-signal regulated kinase 1/2 signaling pathway in amylin's eating inhibitory effect. Am J Physiol

  44. Edwards GL, Gedulin BR, Jodka C, Dilts RP, Miller CC, Young A (1998) Area postrem (AP)-lesions block the regulation of gastric emptying by amylin. Neurogastroenterol Motil 10:26

    Google Scholar 

  45. Gedulin BR, Rink TJ, Young AA (1997) Dose-response for glucagonostatic effect of amylin in rats. Metabolism 46(1):67–70 (pii: S0026-0495(97)90170-0)

    Article  PubMed  CAS  Google Scholar 

  46. Young AA, Gedulin B, Vine W, Percy A, Rink TJ (1995) Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin. Diabetologia 38(6):642–648

    Article  PubMed  CAS  Google Scholar 

  47. Wickbom J, Herrington MK, Permert J, Jansson A, Arnelo U (2008) Gastric emptying in response to IAPP and CCK in rats with subdiaphragmatic afferent vagotomy. Regul Pept 148(1–3):21–25. doi:10.1016/j.regpep.2008.03.010

    Article  PubMed  CAS  Google Scholar 

  48. Potes CS, Lutz TA, Riediger T (2010) Identification of central projections from amylin-activated neurons to the lateral hypothalamus. Brain Res 1334:31–44. doi:10.1016/j.brainres.2010.03.114

    Article  PubMed  CAS  Google Scholar 

  49. Rowland NE, Crews EC, Gentry RM (1997) Comparison of Fos induced in rat brain by GLP-1 and amylin. Regul Pept 71(3):171–174 (pii: S0167-0115(97)01034-3)

    Article  PubMed  CAS  Google Scholar 

  50. Curran T, Morgan JI (1995) Fos: an immediate-early transcription factor in neurons. J Neurobiol 26(3):403–412. doi:10.1002/neu.480260312

    Article  PubMed  CAS  Google Scholar 

  51. Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7:782–786

    Article  PubMed  CAS  Google Scholar 

  52. Torii S, Nakayama K, Yamamoto T, Nishida E (2004) Regulatory mechanisms and function of ERK MAP kinases. J Biochem 136:557–561

    Article  PubMed  CAS  Google Scholar 

  53. Yuan LL, Adams JP, Swank M, Sweatt JD, Johnston D (2002) Protein kinase modulation of dendritic K + channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 22:4860–4868

    PubMed  CAS  Google Scholar 

  54. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  55. Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G (2004) Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 164(4):509–514. doi:10.1083/jcb.200312135

    Article  PubMed  CAS  Google Scholar 

  56. Potes CS, Turek VF, Cole RL, Vu C, Roland BL, Roth JD, Riediger T, Lutz TA (2010) Noradrenergic neurons of the area postrema mediate amylin’s hypophagic action. Am J Physiol Regul Integr Comp Physiol 299(2):R623–R631. doi:10.1152/ajpregu.00791.2009

    Article  PubMed  CAS  Google Scholar 

  57. Babic T, Townsend RL, Patterson LM, Sutton GM, Zheng H, Berthoud HR (2009) Phenotype of neurons in the nucleus of the solitary tract that express CCK-induced activation of the ERK signaling pathway. Am J Physiol Regul Integr Comp Physiol 296(4):R845–R854. doi:10.1152/ajpregu.90531.2008

    Article  PubMed  CAS  Google Scholar 

  58. Sutton GM, Patterson LM, Berthoud HR (2004) Extracellular signal-regulated kinase 1/2 signaling pathway in solitary nucleus mediates cholecystokinin-induced suppression of food intake in rats. J Neurosci 24(45):10240–10247. doi:10.1523/jneurosci.2764-04.2004

    Article  PubMed  CAS  Google Scholar 

  59. Bhavsar S, Watkins J, Young A (1998) Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol Behav 64(4):557–561

    Article  PubMed  CAS  Google Scholar 

  60. Gedulin BR, Young AA (1998) Hypoglycemia overrides amylin-mediated regulation of gastric emptying in rats. Diabetes 47(1):93–97

    Article  PubMed  CAS  Google Scholar 

  61. Michel S, Becskei C, Erguven E, Lutz TA, Riediger T (2007) Diet-derived nutrients modulate the effects of amylin on c-Fos expression in the area postrema and on food intake. Neuroendocrinology 86(2):124–135. doi:10.1159/000107579

    Article  PubMed  CAS  Google Scholar 

  62. Riediger T, Michel S, Forster K, Lutz TA (2009) The ability of amylin to reduce eating depends on the protein content of the diet. Appetite 52(3):854. doi:10.1016/j.appet.2009.04.163

    Google Scholar 

  63. Smith GP (1996) The direct and indirect controls of meal size. Neurosci Biobehav Rev 20(1):41–46. doi:10.1016/0149-7634(95)00038-G

    Article  PubMed  CAS  Google Scholar 

  64. Moran TH, Ladenheim EE, Schwartz GJ (2001) Within-meal gut feedback signaling. Int J Obes Relat Metab Disord 25(Suppl 5):S39–S41. doi:10.1038/sj.ijo.0801910

    Article  PubMed  CAS  Google Scholar 

  65. Schwartz GJ, McHugh PR, Moran TH (1991) Integration of vagal afferent responses to gastric loads and cholecystokinin in rats. Am J Physiol 261(1 Pt 2):R64–R69

    PubMed  CAS  Google Scholar 

  66. Schwartz GJ, McHugh PR, Moran TH (1993) Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. Am J Physiol 265(4 Pt 2):R872–R876

    PubMed  CAS  Google Scholar 

  67. Young A (2005) Inhibition of gastric emptying. Adv Pharmacol 52:99–121. doi:10.1016/S1054-3589(05)52006-4

    Article  PubMed  CAS  Google Scholar 

  68. Reidelberger RD, Kelsey L, Heimann D (2002) Effects of amylin-related peptides on food intake, meal patterns, and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 282(5):R1395–R1404. doi:10.1152/ajpregu.00597.2001

    PubMed  CAS  Google Scholar 

  69. Gedulin BR, Jodka CM, Herrmann K, Young AA (2006) Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul Pept 137(3):121–127. doi:10.1016/j.regpep.2006.06.004

    Article  PubMed  CAS  Google Scholar 

  70. Aryangat AV, Gerich JE (2010) Type 2 diabetes: postprandial hyperglycemia and increased cardiovascular risk. Vasc Health Risk Manag 6:145–155

    PubMed  CAS  Google Scholar 

  71. Kong MF, King P, Macdonald IA, Blackshaw PE, Horowitz M, Perkins AC, Armstrong E, Buchanan KD, Tattersall RB (1999) Euglycaemic hyperinsulinaemia does not affect gastric emptying in type I and type II diabetes mellitus. Diabetologia 42(3):365–372. doi:10.1007/s001250051164

    Article  PubMed  CAS  Google Scholar 

  72. Kong MF, King P, Macdonald IA, Blackshaw PE, Perkins AC, Armstrong E, Buchanan KD, Tattersall RB (1998) Effect of euglycaemic hyperinsulinaemia on gastric emptying and gastrointestinal hormone responses in normal subjects. Diabetologia 41(4):474–481. doi:10.1007/s001250050932

    Article  PubMed  CAS  Google Scholar 

  73. Kong MF, King P, Macdonald IA, Stubbs TA, Perkins AC, Blackshaw PE, Moyses C, Tattersall RB (1997) Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia 40(1):82–88. doi:10.1007/s001250050646

    Article  PubMed  CAS  Google Scholar 

  74. Kong MF, Stubbs TA, King P, Macdonald IA, Lambourne JE, Blackshaw PE, Perkins AC, Tattersall RB (1998) The effect of single doses of pramlintide on gastric emptying of two meals in men with IDDM. Diabetologia 41(5):577–583. doi:10.1007/s001250050949

    Article  PubMed  CAS  Google Scholar 

  75. Clementi G, Caruso A, Cutuli VM, de Bernardis E, Prato A, Amico-Roxas M (1996) Amylin given by central or peripheral routes decreases gastric emptying and intestinal transit in the rat. Experientia 52(7):677–679

    Article  PubMed  CAS  Google Scholar 

  76. Jodka CM, Green D, Young A, Gedulin B (1996) Amylin modulation of gastric emptying in rats depends upon an intact vagus. Diabetes 45:A235

    Google Scholar 

  77. Reidelberger RD, Arnelo U, Granqvist L, Permert J (2001) Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 280(3):R605–R611

    PubMed  CAS  Google Scholar 

  78. Young AA, Gedulin BR, Rink TJ (1996) Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7–36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 45(1):1–3

    Article  PubMed  CAS  Google Scholar 

  79. Asarian L, Eckel LA, Geary N (1998) Behaviorally specific inhibition of sham feeding by amylin. Peptides 19(10):1711–1718

    Article  PubMed  CAS  Google Scholar 

  80. Fitzsimons TJ, Le Magnen J (1969) Eating as a regulatory control of drinking in the rat. J Comp Physiol Psychol 67(3):273–283

    Article  PubMed  CAS  Google Scholar 

  81. Arnelo U, Permert J, Adrian TE, Larsson J, Westermark P, Reidelberger RD (1996) Chronic infusion of islet amyloid polypeptide causes anorexia in rats. Am J Physiol 271(6 Pt 2):R1654–R1659

    PubMed  CAS  Google Scholar 

  82. Becskei C, Grabler V, Edwards GL, Riediger T, Lutz TA (2007) Lesion of the lateral parabrachial nucleus attenuates the anorectic effect of peripheral amylin and CCK. Brain Res 1162:76–84. doi:10.1016/j.brainres.2007.06.016

    Article  PubMed  CAS  Google Scholar 

  83. Mollet A, Meier S, Riediger T, Lutz TA (2003) Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides 24(1):155–158

    Article  PubMed  CAS  Google Scholar 

  84. Rinaman L, Hoffman GE, Dohanics J, Le WW, Stricker EM, Verbalis JG (1995) Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol 360(2):246–256

    Article  PubMed  CAS  Google Scholar 

  85. Chelikani PK, Haver AC, Reidelberger RD (2004) Comparison of the inhibitory effects of PYY(3–36) and PYY(1–36) on gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 287(5):R1064–R1070. doi:10.1152/ajpregu.00376.2004

    Article  PubMed  CAS  Google Scholar 

  86. Reidelberger RD, Haver AC, Apenteng BA, Anders KL, Steenson SM (2010) Effects of Exendin-4 alone and with peptide YY(3-36) on food intake and body weight in diet-induced obese rats. Obesity (Silver Spring). doi:10.1038/oby.2010.136

  87. Riediger T, Bothe C, Becskei C, Lutz TA (2004) Peptide YY directly inhibits ghrelin-activated neurons of the arcuate nucleus and reverses fasting-induced c-Fos expression. Neuroendocrinology 79(6):317–326. doi:10.1159/000079842

    Article  PubMed  CAS  Google Scholar 

  88. Machidori H, Sakata T, Yoshimatsu H, Ookuma K, Fujimoto K, Kurokawa M, Yamatodani A, Wada H (1992) Zucker obese rats: defect in brain histamine control of feeding. Brain Res 590(1–2):180–186. doi:10.1016/0006-8993(92)91093-T

    Article  PubMed  CAS  Google Scholar 

  89. Sakata T, Yoshimatsu H, Kurokawa M (1997) Hypothalamic neuronal histamine: implications of its homeostatic control of energy metabolism. Nutrition 13(5):403–411

    Article  PubMed  CAS  Google Scholar 

  90. Sakata T, Fukagawa K, Ookuma K, Fujimoto K, Yoshimatsu H, Yamatodani A, Wada H (1988) Modulation of neuronal histamine in control of food intake. Physiol Behav 44(4–5):539–543. doi:10.1016/0031-9384(88)90316-2

    Article  PubMed  CAS  Google Scholar 

  91. Sakata T, Fukagawa K, Fujimoto K, Yoshimatsu H, Shiraishi T, Wada H (1988) Feeding induced by blockade of histamine H1-receptor in rat brain. Experientia 44(3):216–218

    Article  PubMed  CAS  Google Scholar 

  92. Mercer LP, Kelley DS, Humphries LL, Dunn JD (1994) Manipulation of central nervous system histamine or histaminergic receptors (H1) affects food intake in rats. J Nutr 124(7):1029–1036

    PubMed  CAS  Google Scholar 

  93. Mercer LD, Beart PM (1997) Histochemistry in rat brain and spinal cord with an antibody directed at the cholecystokininA receptor. Neurosci Lett 225(2):97–100 (pii: S0304-3940(97)00197-3)

    Article  PubMed  CAS  Google Scholar 

  94. Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71:1–51

    PubMed  CAS  Google Scholar 

  95. Arrang J-M, Garbarg M, Lancelot J-C, Lecomte J-M, Pollard H, Robba M, Schunack W, Schwartz J-C (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327:117–123

    Article  PubMed  CAS  Google Scholar 

  96. Mollet A, Lutz TA, Meier S, Riediger T, Rushing PA, Scharrer E (2001) Histamine H1 receptors mediate the anorectic action of the pancreatic hormone amylin. Am J Physiol Regul Integr Comp Physiol 281(5):R1442–R1448

    PubMed  CAS  Google Scholar 

  97. Boyle CN, Stöcker D, Lutz TA (2011) Involvement of the histaminergic system in amylin and leptin action. Appetite 57(Suppl 1):S7

    Article  Google Scholar 

  98. Cooper GJ (1994) Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr Rev 15(2):163–201

    PubMed  CAS  Google Scholar 

  99. Lutz TA, Tschudy S, Rushing PA, Scharrer E (2000) Amylin receptors mediate the anorectic action of salmon calcitonin (sCT). Peptides 21(2):233–238

    Article  PubMed  CAS  Google Scholar 

  100. Muff R, Born W, Fischer JA (1995) Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur J Endocrinol 133(1):17–20

    Article  PubMed  CAS  Google Scholar 

  101. Riediger T, Schmid HA, Young AA, Simon E (1999) Pharmacological characterisation of amylin-related peptides activating subfornical organ neurones. Brain Res 837(1–2):161–168

    Article  PubMed  CAS  Google Scholar 

  102. Lutz TA, Del Prete E, Walzer B, Scharrer E (1996) The histaminergic, but not the serotoninergic, system mediates amylin’s anorectic effect. Peptides 17(8):1317–1322

    Article  PubMed  CAS  Google Scholar 

  103. Morimoto T, Yamamoto Y, Mobarakeh JI, Yanai K, Watanabe T, Yamatodani A (1999) Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol Behav 67(5):679–683 (pii: S0031-9384(99)00123-7)

    Article  PubMed  CAS  Google Scholar 

  104. Yoshimatsu H, Itateyama E, Kondou S, Tajima D, Himeno K, Hidaka S, Kurokawa M, Sakata T (1999) Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes 48(12):2286–2291

    Article  PubMed  CAS  Google Scholar 

  105. Masaki T, Yoshimatsu H, Chiba S, Watanabe T, Sakata T (2001) Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes 50(2):385–391

    Article  PubMed  CAS  Google Scholar 

  106. Woods SC, D’Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93(11 Suppl 1):S37–S50. doi:10.1210/jc.2008-1630

    Google Scholar 

  107. Irani BG, Le Foll C, Dunn-Meynell AA, Levin BE (2009) Ventromedial nucleus neurons are less sensitive to leptin excitation in rats bred to develop diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 296(3):R521–R527. doi:10.1152/ajpregu.90842.2008

    Article  PubMed  CAS  Google Scholar 

  108. Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C, Koda JE, Anderson CM, Parkes DG, Baron AD (2008) Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Acad Sci USA 105(20):7257–7262. doi:10.1073/pnas.0706473105

    Article  PubMed  CAS  Google Scholar 

  109. Turek VF, Trevaskis JL, Levin BE, Dunn-Meynell AA, Irani B, Gu G, Wittmer C, Griffin PS, Vu C, Parkes DG, Roth JD (2010) Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151(1):143–152. doi:10.1210/en.2009-0546

    Article  PubMed  CAS  Google Scholar 

  110. Lutz TA, Tschudy S, Mollet A, Geary N, Scharrer E (2001) Dopamine D(2) receptors mediate amylin’s acute satiety effect. Am J Physiol Regul Integr Comp Physiol 280(6):R1697–R1703

    PubMed  CAS  Google Scholar 

  111. Qian M, Johnson AE, Kallstrom L, Carrer H, Södersten P (1997) Cholecystokinin, dopamine D2 and N-methyl-d-aspartate binding sites in the nucleus of the solitary tract of the rat: possible relationship to ingestive behavior. Neuroscience 77:1077–1089

    Article  PubMed  CAS  Google Scholar 

  112. Barrachina MD, Martinez V, Wang L, Wei JY, Tache Y (1997) Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA 94(19):10455–10460

    Article  PubMed  CAS  Google Scholar 

  113. Riedy CA, Chavez M, Figlewicz DP, Woods SC (1995) Central insulin enhances sensitivity to cholecystokinin. Physiol Behav 58:557–561

    Article  Google Scholar 

  114. Woods SC (2005) Signals that influence food intake and body weight. Physiol Behav 86(5):709–716. doi:10.1016/j.physbeh.2005.08.060

    Article  PubMed  CAS  Google Scholar 

  115. Surina-Baumgartner DM, Langhans W, Geary N (1995) Hepatic portal insulin antibody infusion increases, but insulin does not alter, spontaneous meal size in rats. Am J Physiol 269:R978–R982

    PubMed  CAS  Google Scholar 

  116. Crawley JN, Beinfeld MC (1983) Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature 302(5910):703–706

    Article  PubMed  CAS  Google Scholar 

  117. West DB, Fey D, Woods SC (1984) Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 246(5 Pt 2):R776–R787

    PubMed  CAS  Google Scholar 

  118. Boyle CN, Rossier MM, Lutz TA (2011) Influence of high-fat feeding, diet-induced obesity, and hyperamylinemia on the sensitivity to acute amylin. Physiol Behav 104(1):20–28. doi:10.1016/j.physbeh.2011.04.044

    Article  PubMed  CAS  Google Scholar 

  119. Woods SC (2004) Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am J Physiol Gastrointest Liver Physiol 286(1):G7–G13. doi:10.1152/ajpgi.00448.2003

    Article  PubMed  CAS  Google Scholar 

  120. Pieber TR, Roitelman J, Lee Y, Luskey KL, Stein DT (1994) Direct plasma radioimmunoassay for rat amylin-(1–37): concentrations with acquired and genetic obesity. Am J Physiol 267(1 Pt 1):E156–E164

    PubMed  CAS  Google Scholar 

  121. Leckstrom A, Lundquist I, Ma Z, Westermark P (1999) Islet amyloid polypeptide and insulin relationship in a longitudinal study of the genetically obese (ob/ob) mouse. Pancreas 18(3):266–273

    Article  PubMed  CAS  Google Scholar 

  122. Boyle CN, Rossier MM, Lutz TA (2010) Diet-induced obesity hyperamylinemia and amylin sensitivity. Appetite 54(3):636

    Google Scholar 

  123. Enoki S, Mitsukawa T, Takemura J, Nakazato M, Aburaya J, Toshimori H, Matsukara S (1992) Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 15(1):97–102

    Article  PubMed  CAS  Google Scholar 

  124. Hanabusa T, Kubo K, Oki C, Nakano Y, Okai K, Sanke T, Nanjo K (1992) Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 15(1):89–96

    Article  PubMed  CAS  Google Scholar 

  125. Gloy VL, Lutz TA, Langhans W, Geary N, Hillebrand JJ (2010) Basal plasma levels of insulin, leptin, ghrelin, and amylin do not signal adiposity in rats recovering from forced overweight. Endocrinology 151(9):4280–4288. doi:10.1210/en.2010-0439

    Article  PubMed  CAS  Google Scholar 

  126. Boyle CN, Lutz TA (2011) Amylinergic control of food intake in lean and obese rodents. Physiol Behav. doi:10.1016/j.physbeh.2011.02.015

  127. Roth JD, Hughes H, Kendall E, Baron AD, Anderson CM (2006) Antiobesity effects of the beta-cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 147(12):5855–5864. doi:10.1210/en.2006-0393

    Article  PubMed  CAS  Google Scholar 

  128. Rushing PA, Hagan MM, Seeley RJ, Lutz TA, Woods SC (2000) Amylin: a novel action in the brain to reduce body weight. Endocrinology 141(2):850–853

    Article  PubMed  CAS  Google Scholar 

  129. Wielinga PY, Alder B, Lutz TA (2007) The acute effect of amylin and salmon calcitonin on energy expenditure. Physiol Behav 91(2–3):212–217. doi:10.1016/j.physbeh.2007.02.012

    Article  PubMed  CAS  Google Scholar 

  130. Wielinga PY, Lowenstein C, Muff S, Munz M, Woods SC, Lutz TA (2010) Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol Behav 101(1):45–52. doi:10.1016/j.physbeh.2010.04.012

    Article  PubMed  CAS  Google Scholar 

  131. Chavez M, Kaiyala K, Madden LJ, Schwartz MW, Woods SC (1995) Intraventricular insulin and the level of maintained body weight in rats. Behav Neurosci 109:528–531

    Article  PubMed  CAS  Google Scholar 

  132. Munzberg H (2010) Leptin-signaling pathways and leptin resistance. Forum Nutr 63:123–132. doi:10.1159/000264400

    Article  PubMed  CAS  Google Scholar 

  133. Banks WA (2010) Blood-brain barrier as a regulatory interface. Forum Nutr 63:102–110. doi:10.1159/000264398

    Article  PubMed  CAS  Google Scholar 

  134. Banks WA (2008) The blood-brain barrier: connecting the gut and the brain. Regul Pept 149(1–3):11–14. doi:10.1016/j.regpep.2007.08.027

    Article  PubMed  CAS  Google Scholar 

  135. Banks WA (2001) Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des 7(2):125–133

    Article  PubMed  CAS  Google Scholar 

  136. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE (2004) Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53(5):1253–1260

    Article  PubMed  CAS  Google Scholar 

  137. Banks WA, DiPalma CR, Farrell CL (1999) Impaired transport of leptin across the blood–brain barrier in obesity. Peptides 20(11):1341–1345 (pii: S0196-9781(99)00139-4)

    Article  PubMed  CAS  Google Scholar 

  138. Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, Lefevre AL, Cruciani-Guglielmacci C, Magnan C, Yu F, Niswender K, Irani BG, Holland WL, Clegg DJ (2009) Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 119(9):2577–2589. doi:10.1172/jci36714

    Article  PubMed  CAS  Google Scholar 

  139. Clegg DJ, Benoit SC, Reed JA, Woods SC, Dunn-Meynell A, Levin BE (2005) Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am J Physiol Regul Integr Comp Physiol 288(4):R981–R986. doi:10.1152/ajpregu.00675.2004

    Article  PubMed  CAS  Google Scholar 

  140. Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM, D’Alessio D, Tso P, Seeley RJ, Woods SC (2011) Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav 103(1):10–16. doi:10.1016/j.physbeh.2011.01.010

    Article  PubMed  CAS  Google Scholar 

  141. Knight ZA, Hannan KS, Greenberg ML, Friedman JM (2010) Hyperleptinemia is required for the development of leptin resistance. PLoS ONE 5(6):e11376. doi:10.1371/journal.pone.0011376

  142. Buse JB, Weyer C, Maggs DG (2002) Amylin replacement with pramlintide in type 1 and type 2 diabetes: a physiological approach to overcome barriers with insulin therapy. Clin Diabetes 20(3):137–144

    Article  Google Scholar 

  143. Hollander P, Maggs DG, Ruggles JA, Fineman M, Shen L, Kolterman OG, Weyer C (2004) Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obes Res 12(4):661–668. doi:10.1038/oby.2004.76

    Article  PubMed  CAS  Google Scholar 

  144. Trevaskis J, Coffey T, Cole R, Lei C, Wittmer C, Walsh B, Weyer C, Koda J, Baron A, Parkes D, Roth J (2008) Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: magnitude and mechanisms. Endocrinology 149(11):5679–5687

    Article  PubMed  CAS  Google Scholar 

  145. Weyer C, Maggs DG, Young AA, Kolterman OG (2001) Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: a physiological approach toward improved metabolic control. Curr Pharm Des 7(14):1353–1373

    Article  PubMed  CAS  Google Scholar 

  146. Ashwell M, Meade CJ (1978) Obesity: do fat cells from genetically obese mice (C57BL/6 J ob/ob) have an innate capacity for increased fat storage? Diabetologia 15(6):465–470

    Article  PubMed  CAS  Google Scholar 

  147. Roth JD, Trevaskis JL, Turek VF, Parkes DG (2010) “Weighing in” on synergy: preclinical research on neurohormonal anti-obesity combinations. Brain Res 1350:86–94. doi:10.1016/j.brainres.2010.01.027

    Article  PubMed  CAS  Google Scholar 

  148. Ravussin E, Smith SR, Mitchell JA, Shringarpure R, Shan K, Maier H, Koda JE, Weyer C (2009) Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring) 17(9):1736–1743. doi:10.1038/oby.2009.184

    Article  CAS  Google Scholar 

  149. Covasa M, Marcuson JK, Ritter RC (2001) Diminished satiation in rats exposed to elevated levels of endogenous or exogenous cholecystokinin. Am J Physiol Regul Integr Comp Physiol 280(2):R331–R337

    PubMed  CAS  Google Scholar 

  150. Covasa M, Ritter RC (1998) Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides 19(8):1407–1415 (pii: S0196-9781(98)00096-5)

    Article  PubMed  CAS  Google Scholar 

  151. Covasa M, Ritter RC (1999) Reduced sensitivity to the satiation effect of intestinal oleate in rats adapted to high-fat diet. Am J Physiol 277(1 Pt 2):R279–R285

    PubMed  CAS  Google Scholar 

  152. Swartz TD, Duca FA, Covasa M (2010) Differential feeding behavior and neuronal responses to CCK in obesity-prone and -resistant rats. Brain Res 1308:79–86. doi:10.1016/j.brainres.2009.10.045

    Article  PubMed  CAS  Google Scholar 

  153. Banks WA, Kastin AJ, Maness LM, Huang W, Jaspan JB (1995) Permeability of the blood-brain barrier to amylin. Life Sci 57(22):1993–2001 (pii: 002432059502197Q)

    Article  PubMed  CAS  Google Scholar 

  154. Banks WA, Kastin AJ (1998) Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides 19(5):883–889 (pii: S0196-9781(98)00018-7)

    Article  PubMed  CAS  Google Scholar 

  155. Reinehr T, de Sousa G, Niklowitz P, Roth CL (2007) Amylin and its relation to insulin and lipids in obese children before and after weight loss. Obesity (Silver Spring) 15(8):2006–2011. doi:10.1038/oby.2007.239

    Article  CAS  Google Scholar 

  156. Levin BE, Dunn-Meynell AA (2002) Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 283(4):R941–R948. doi:10.1152/ajpregu.00245.2002

    PubMed  Google Scholar 

  157. Levin BE, Dunn-Meynell AA (2002) Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 282(1):R46–R54

    PubMed  CAS  Google Scholar 

  158. Boyle CN, Munz M, Wielinga PY, Stöcker D, Lutz TA (2010) Short-term, but not extended, access to palatable diet diminishes amylin responsiveness in rat. Appetite 54(3):636

    Google Scholar 

  159. Baldo BA, Kelley AE (2001) Amylin infusion into rat nucleus accumbens potently depresses motor activity and ingestive behavior. Am J Physiol Regul Integr Comp Physiol 281(4):R1232–R1242

    PubMed  CAS  Google Scholar 

  160. Levin BE, Dunn-Meynell AA (2000) Defense of body weight against chronic caloric restriction in obesity-prone and -resistant rats. Am J Physiol Regul Integr Comp Physiol 278(1):R231–R237

    PubMed  CAS  Google Scholar 

  161. Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE (1997) Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol 273(2 Pt 2):R725–R730

    PubMed  CAS  Google Scholar 

  162. Ogawa A, Harris V, McCorkle SK, Unger RH, Luskey KL (1990) Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J Clin Invest 85(3):973–976. doi:10.1172/JCI114528

    Article  PubMed  CAS  Google Scholar 

  163. Pieber TR, Stein DT, Ogawa A, Alam T, Ohneda M, McCorkle K, Chen L, McGarry JD, Unger RH (1993) Amylin-insulin relationships in insulin resistance with and without diabetic hyperglycemia. Am J Physiol 265(3 Pt 1):E446–E453

    PubMed  CAS  Google Scholar 

  164. Blackard WG, Clore JN, Kellum JM (1994) Amylin/insulin secretory ratios in morbidly obese man: inverse relationship with glucose disappearance rate. J Clin Endocrinol Metab 78(5):1257–1260

    Article  PubMed  CAS  Google Scholar 

  165. Qi D, Cai K, Wang O, Li Z, Chen J, Deng B, Qian L, Le Y (2009) Fatty acids induce amylin expression and secretion by pancreatic {beta}-cells. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.00242.2009

  166. Isaksson B, Wang F, Permert J, Olsson M, Fruin B, Herrington MK, Enochsson L, Erlanson-Albertsson C, Arnelo U (2005) Chronically administered islet amyloid polypeptide in rats serves as an adiposity inhibitor and regulates energy homeostasis. Pancreatology 5(1):29–36. doi:10.1159/000084488

    Article  PubMed  CAS  Google Scholar 

  167. Osaka T, Tsukamoto A, Koyama Y, Inoue S (2008) Central and peripheral administration of amylin induces energy expenditure in anesthetized rats. Peptides 29(6):1028–1035. doi:10.1016/j.peptides.2008.02.002

    Article  PubMed  CAS  Google Scholar 

  168. Wielinga PY, Löwenstein C, Alder B, Lutz TA (2008) Effect of peripheral and central amylin on energy expenditure and body temperature. Appetite 91:409

    Google Scholar 

  169. Osto M, Wielinga PY, Alder B, Walser N, Lutz TA (2007) Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin. Physiol Behav 91(5):566–572. doi:10.1016/j.physbeh.2007.03.017

    Article  PubMed  CAS  Google Scholar 

  170. Rushing PA, Lutz TA, Seeley RJ, Woods SC (2000) Amylin and insulin interact to reduce food intake in rats. Horm Metab Res 32(2):62–65. doi:10.1055/s-2007-978590

    Article  PubMed  CAS  Google Scholar 

  171. Seth R, Knight WD, Overton JM (2010) Combined amylin-leptin treatment lowers blood pressure and adiposity in lean and obese rats. Int J Obes (Lond). doi:10.1038/ijo.2010.262

  172. Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD (2009) Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity (Silver Spring). doi:10.1038/oby.2009.187

  173. Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL (2003) Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52(2):232–238

    Article  PubMed  CAS  Google Scholar 

  174. Chapman I, Parker B, Doran S, Feinle-Bisset C, Wishart J, Lush CW, Chen K, Lacerte C, Burns C, McKay R, Weyer C, Horowitz M (2007) Low-dose pramlintide reduced food intake and meal duration in healthy, normal-weight subjects. Obesity (Silver Spring) 15(5):1179–1186. doi:10.1038/oby.2007.626

    Article  CAS  Google Scholar 

  175. Chapman I, Parker B, Doran S, Feinle-Bisset C, Wishart J, Strobel S, Wang Y, Burns C, Lush C, Weyer C, Horowitz M (2005) Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia 48(5):838–848. doi:10.1007/s00125-005-1732-4

    Article  PubMed  CAS  Google Scholar 

  176. Aronne L, Fujioka K, Aroda V, Chen K, Halseth A, Kesty NC, Burns C, Lush CW, Weyer C (2007) Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: a phase 2, randomized, placebo-controlled, dose-escalation study. J Clin Endocrinol Metab 92(8):2977–2983. doi:10.1210/jc.2006-2003

    Article  PubMed  CAS  Google Scholar 

  177. Smith SR, Aronne LJ, Burns CM, Kesty NC, Halseth AE, Weyer C (2008) Sustained weight loss following 12-month pramlintide treatment as an adjunct to lifestyle intervention in obesity. Diabetes Care 31(9):1816–1823. doi:10.2337/dc08-0029

    Article  PubMed  Google Scholar 

  178. Smith SR, Blundell JE, Burns C, Ellero C, Schroeder BE, Kesty NC, Chen KS, Halseth AE, Lush CW, Weyer C (2007) Pramlintide treatment reduces 24-h caloric intake and meal sizes and improves control of eating in obese subjects: a 6-wk translational research study. Am J Physiol Endocrinol Metab 293(2):E620–E627. doi:10.1152/ajpendo.00217.2007

    Article  PubMed  CAS  Google Scholar 

  179. Trevaskis JL, Parkes DG, Roth JD (2010) Insights into amylin-leptin synergy. Trends Endocrinol Metab 21(8):473–479. doi:10.1016/j.tem.2010.03.006

    Article  PubMed  CAS  Google Scholar 

  180. Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD (2010) Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity (Silver Spring) 18(1):21–26. doi:10.1038/oby.2009.187

    Article  CAS  Google Scholar 

  181. Asarian L, Geary N (2007) Estradiol enhances cholecystokinin-dependent lipid-induced satiation and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 148(12):5656–5666. doi:10.1210/en.2007-0341

    Article  PubMed  CAS  Google Scholar 

  182. Asarian L, Geary N (2002) Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm Behav 42(4):461–471 (pii: S0018506X02918350)

    Article  PubMed  CAS  Google Scholar 

  183. Thammacharoen S, Geary N, Lutz TA, Ogawa S, Asarian L (2009) Divergent effects of estradiol and the estrogen receptor-alpha agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice. Brain Res 1268:88–96. doi:10.1016/j.brainres.2009.02.067

    Article  PubMed  CAS  Google Scholar 

  184. Thammacharoen S, Lutz TA, Geary N, Asarian L (2008) Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 149(4):1609–1617. doi:10.1210/en.2007-0340

    Article  PubMed  CAS  Google Scholar 

  185. Meyer MR, Clegg DJ, Prossnitz ER, Barton M (2011) Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol (Oxf). doi:10.1111/j.1748-1716.2010.02237.x

  186. Park CJ, Zhao Z, Glidewell-Kenney C, Lazic M, Chambon P, Krust A, Weiss J, Clegg DJ, Dunaif A, Jameson JL, Levine JE (2011) Genetic rescue of nonclassical ERalpha signaling normalizes energy balance in obese Eralpha-null mutant mice. J Clin Invest 121(2):604–612. doi:10.1172/jci41702

    Article  PubMed  CAS  Google Scholar 

  187. Eckel LA, Geary N (1999) Endogenous cholecystokinin’s satiating action increases during estrus in female rats. Peptides 20(4):451–456

    Article  PubMed  CAS  Google Scholar 

  188. Trevaskis JL, Turek VF, Wittmer C, Griffin PS, Wilson JK, Reynolds JM, Zhao Y, Mack CM, Parkes DG, Roth JD (2010) Enhanced amylin-mediated body weight loss in estradiol-deficient diet-induced obese rats. Endocrinology 151(12):5657–5668. doi:10.1210/en.2010-0590

    Article  PubMed  CAS  Google Scholar 

  189. Lutz TA (2011) Amylin may offer (more) help to treat postmenopausal obesity. Endocrinology 152(1):1–3. doi:10.1210/en.2010-1158

    Article  PubMed  CAS  Google Scholar 

  190. Asarian L, Boyle CN, Lutz TA (2011) Estradiol (E2) increases the acute eating-inhibitory effect of amylin in ovariectomized (OVX) rats. Appetite 57(Suppl 1):S2

    Article  Google Scholar 

Download references

Acknowledgments

The continued financial support of the Swiss National Science Foundation, the support of the Zurich Center of Integrative Human Physiology, the Novartis Foundation, the Ciba-Geigy Foundation, the Olga Mayenfisch Foundation, and the Vontobel Foundation are gratefully acknowledged. We thank Amylin Pharmaceuticals Inc. for some supply of amylin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Lutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, T.A. Control of energy homeostasis by amylin. Cell. Mol. Life Sci. 69, 1947–1965 (2012). https://doi.org/10.1007/s00018-011-0905-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0905-1

Keywords

Navigation