Skip to main content
Log in

Inactivation of endothelial proprotein convertase 5/6 decreases collagen deposition in the cardiovascular system: role of fibroblast autophagy

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Proprotein convertase (PC) 5/6 belongs to a family of secretory proteases involved in proprotein proteolysis. Several studies suggest a role for PC5/6 in cardiovascular disease. Because lethality at birth of mice lacking PC5/6 precluded elucidation of its function in the adult, we generated mice in which the gene of PC5/6 (pcsk5) is specifically inactivated in endothelial cells (ecKO), which are viable and do not exhibit overt abnormalities. In order to uncover the function of PC5/6 in the cardiovascular system, the effect of ecKO was studied in aging mice. In 16 to 18-month-old ecKO mice, the left ventricle (LV) mass, media cross-sectional area of aorta and coronary arteries, and media-to-lumen ratio of mesenteric arteries were decreased. The LV presented decreased diastolic function, and mesenteric arteries showed decreased stiffness. Collagen was decreased in the LV myocardial interstitium and perivascularly in coronary arteries and aorta. Cardiovascular hypotrophy likely develops with aging, since no significant changes were observed in 2-month-old ecKO mice. Fibroblasts, as a source of collagen in myocardium and vasculature, may play a role in the decrease in collagen deposition. Fibroblasts co-cultured with ecKO endothelial cells showed decreased collagen production, decreased insulin-like growth factor (IGF)-1/Akt/mTOR signaling, and enhanced autophagic activation. PC5/6 inactivation in endothelial cells results in cardiovascular hypotrophy associated with decreased collagen deposition, decreased LV diastolic function, and vascular stiffness, suggesting a trophic role of endothelial PC5/6 in the cardiovascular system, likely mediated by IGF-1/Akt/mTOR signaling and control of autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seidah NG, Mayer G, Zaid A, Rousselet E, Nassoury N, Poirier S, Essalmani R, Prat A (2008) The activation and physiological functions of the proprotein convertases. Int J Biochem Cell Biol 40:1111–1125

    Article  PubMed  CAS  Google Scholar 

  2. Seidah NG, Prat A (2007) The proprotein convertases are potential targets in the treatment of dyslipidemia. J Mol Med 85:685–696

    Article  PubMed  CAS  Google Scholar 

  3. Scamuffa N, Calvo F, Chretien M, Seidah NG, Khatib AM (2006) Proprotein convertases: lessons from knockouts. FASEB J 20:1954–1963

    Article  PubMed  CAS  Google Scholar 

  4. Iatan I, Dastani Z, Do R, Weissglas-Volkov D, Ruel I, Lee JC, Huertas-Vazquez A, Taskinen MR, Prat A, Seidah NG et al (2009) Genetic variation at the proprotein convertase subtilisin/kexin type 5 gene modulates high-density lipoprotein cholesterol levels. Circ Cardiovasc Genet 2:467–475

    Article  PubMed  CAS  Google Scholar 

  5. Stawowy P, Kallisch H, Borges Pereira SN, Stibenz D, Veinot JP, Grafe M, Seidah NG, Chretien M, Fleck E, Graf K (2005) Immunohistochemical localization of subtilisin/kexin-like proprotein convertases in human atherosclerosis. Virchows Arch 446:351–359

    Article  PubMed  CAS  Google Scholar 

  6. Stawowy P, Meyborg H, Stibenz D, Borges Pereira SN, Roser M, Thanabalasingam U, Veinot JP, Chretien M, Seidah NG, Fleck E et al (2005) Furin-like proprotein convertases are central regulators of the membrane type matrix metalloproteinase-pro-matrix metalloproteinase-2 proteolytic cascade in atherosclerosis. Circulation 111:2820–2827

    Article  PubMed  CAS  Google Scholar 

  7. Veinot JP, Prichett-Pejic W, Picard P, Parks W, Schwartz R, Seidah NG, Chretien M (2004) Implications of proprotein convertase 5 (PC5) in the arterial restenotic process in a porcine model. Cardiovasc Pathol 13:241–250

    Article  PubMed  CAS  Google Scholar 

  8. Lusson J, Vieau D, Hamelin J, Day R, Chretien M, Seidah NG (1993) cDNA structure of the mouse and rat subtilisin/kexin-like PC5: a candidate proprotein convertase expressed in endocrine and nonendocrine cells. Proc Natl Acad Sci U S A 90:6691–6695

    Article  PubMed  CAS  Google Scholar 

  9. Essalmani R, Hamelin J, Marcinkiewicz J, Chamberland A, Mbikay M, Chretien M, Seidah NG, Prat A (2006) Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse. Mol Cell Biol 26:354–361

    Article  PubMed  CAS  Google Scholar 

  10. Essalmani R, Zaid A, Marcinkiewicz J, Chamberland A, Pasquato A, Seidah NG, Prat A (2008) In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate. Proc Natl Acad Sci U S A 105:5750–5755

    Article  PubMed  CAS  Google Scholar 

  11. Beaubien G, Schafer MK, Weihe E, Dong W, Chretien M, Seidah NG, Day R (1995) The distinct gene expression of the pro-hormone convertases in the rat heart suggests potential substrates. Cell Tissue Res 279:539–549

    Article  PubMed  CAS  Google Scholar 

  12. Nour N, Mayer G, Mort JS, Salvas A, Mbikay M, Morrison CJ, Overall CM, Seidah NG (2005) The cysteine-rich domain of the secreted proprotein convertases PC5A and PACE4 functions as a cell surface anchor and interacts with tissue inhibitors of metalloproteinases. Mol Biol Cell 16:5215–5226

    Article  PubMed  CAS  Google Scholar 

  13. Stawowy P, Margeta C, Kallisch H, Seidah NG, Chretien M, Fleck E, Graf K (2004) Regulation of matrix metalloproteinase MT1-MMP/MMP-2 in cardiac fibroblasts by TGF-beta1 involves furin-convertase. Cardiovasc Res 63:87–97

    Article  PubMed  CAS  Google Scholar 

  14. Szumska D, Pieles G, Essalmani R, Bilski M, Mesnard D, Kaur K, Franklyn A, El OK, Jefferis J, Bentham J et al (2008) VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Gene Dev 22:1465–1477

    Article  PubMed  CAS  Google Scholar 

  15. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230:230–242

    Article  PubMed  CAS  Google Scholar 

  16. Ferrari AU, Radaelli A, Centola M (2003) Invited review: aging and the cardiovascular system. J Appl Physiol 95:2591–2597

    PubMed  Google Scholar 

  17. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278

    Article  PubMed  CAS  Google Scholar 

  18. Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U, Sato TN (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci U S A 94:3058–3063

    Article  PubMed  CAS  Google Scholar 

  19. Liu X, Sun SQ, Hassid A, Ostrom RS (2006) cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts. Mol Pharmacol 70:1992–2003

    Article  PubMed  CAS  Google Scholar 

  20. Zhao J, Brault JJ, Schild A, Goldberg AL (2008) Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy 4:378–380

    PubMed  CAS  Google Scholar 

  21. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263

    Article  PubMed  CAS  Google Scholar 

  22. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metabol 6:472–483

    Article  CAS  Google Scholar 

  23. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38:581–587

    Article  PubMed  CAS  Google Scholar 

  24. Jugdutt BI (2009) Limiting fibrosis after myocardial infarction. N Engl J Med 360:1567–1569

    Article  PubMed  CAS  Google Scholar 

  25. Susic D, Frohlich ED (2008) The aging hypertensive heart: a brief update. Nat Clin Pract Cardiovasc Med 5:104–110

    Article  PubMed  Google Scholar 

  26. Bishop JE, Laurent GJ (1995) Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J 16(Suppl C):38–44

    PubMed  CAS  Google Scholar 

  27. Schiffrin EL (2004) Vascular stiffening and arterial compliance. Implications for systolic blood pressure. Am J Hypertens 17:39S–48S

    Article  PubMed  CAS  Google Scholar 

  28. Vasan RS, Benjamin EJ (2001) Diastolic heart failure–no time to relax. N Engl J Med 344:56–59

    Article  PubMed  CAS  Google Scholar 

  29. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51

    Article  PubMed  CAS  Google Scholar 

  30. Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105:1164–1176

    Article  PubMed  CAS  Google Scholar 

  31. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361:1570–1583

    Article  PubMed  CAS  Google Scholar 

  32. Xu Y, Kim SO, Li Y, Han J (2006) Autophagy contributes to caspase-independent macrophage cell death. J Biol Chem 281:19179–19187

    Article  PubMed  CAS  Google Scholar 

  33. McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, Schinke M, Kong S, Sherwood MC, Brown J et al (2004) The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem 279:4782–4793

    Article  PubMed  CAS  Google Scholar 

  34. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Edwige Marcinkiewicz, Manon Laprise, André Turgeon, Marie-Eve Deschênes, and Claudia Toulouse for excellent technical support and animal care. AP and NGS were funded by Canadian Institutes of Health Research (CIHR) grant MOP44363 and team grant CTP82946 and NGS by a Canada Research Chair (CRC) from CIHR/Government of Canada # 216684. Work at the LDI was funded by CIHR grants MOP82790, a CRC on Hypertension and Vascular Research from CIHR/Government of Canada, and by the Canada Fund for Innovation, all to ELS.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ernesto L. Schiffrin or Annik Prat.

Additional information

C. Marchesi and R. Essalmani contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 89.4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchesi, C., Essalmani, R., Lemarié, C.A. et al. Inactivation of endothelial proprotein convertase 5/6 decreases collagen deposition in the cardiovascular system: role of fibroblast autophagy. J Mol Med 89, 1103–1111 (2011). https://doi.org/10.1007/s00109-011-0776-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0776-9

Keywords

Navigation