Skip to main content
Log in

Novel human α1a-adrenoceptor single nucleotide polymorphisms alter receptor pharmacology and biological function

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We identified nine naturally-occurring human single nucleotide polymorphisms (SNPs) in the α1a-adrenoceptor (α1aAR) coding region, seven of which result in amino acid change. Utilizing rat-1 fibroblasts stably expressing wild type α1aAR or each SNP at both high and low levels, we investigated the effect of these SNPs on receptor function. Compared with wild type, two SNPs (R166K, V311I) cause a decrease in binding affinity for agonists norepinephrine, epinephrine, and phenylephrine, and also shift the dose–response curve for norepinephrine stimulation of inositol phosphate (IP) production to the right (reduced potency) without altering maximal IP activity. In addition, SNP V311I and I200S display altered antagonist binding. Interestingly, a receptor with SNP G247R (located in the third intracellular loop) displays increased maximal receptor IP activity and stimulates cell growth. The increased receptor signaling for α1aAR G247R is not mediated by altered ligand binding or a deficiency in agonist-mediated desensitization, but appears to be related to enhanced receptor–G protein coupling. In conclusion, four naturally-occurring human α1aAR SNPs induce altered receptor pharmacology and/or biological activity. This finding has potentially important implications in many areas of medicine and can be used to guide α1aAR SNP choice for future clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Autelitano DJ, Woodcock EA (1998) Selective activation of alpha1A-adrenergic receptors in neonatal cardiac myocytes is sufficient to cause hypertrophy and differential regulation of alpha1-adrenergic receptor subtype mRNAs. J Mol Cell Cardiol 30:1515–1523

    Google Scholar 

  • Aynacioglu AS, Cascorbi I, Gungor K, Ozkur M, Bekir N, Roots I, Brockmoller J (1999) Population frequency, mutation linkage and analytical methodology for the Arg16Gly, Gln27Glu and Thr164Ile polymorphisms in the beta2-adrenergic receptor among Turks. Br J Clin Pharmacol 48:761–764

    Google Scholar 

  • Bolonna AA, Arranz MJ, Munro J, Osborne S, Petouni M, Martinez M, Kerwin RW (2000) No influence of adrenergic receptor polymorphisms on schizophrenia and antipsychotic response. Neurosci Lett 280:65–68

    Article  CAS  PubMed  Google Scholar 

  • Brodde OE, Buscher R, Tellkamp R, Radke J, Dhein S, Insel PA (2001) Blunted cardiac responses to receptor activation in subjects with Thr164Ile beta(2)-adrenoceptors. Circulation 103:1048–1050

    Google Scholar 

  • Chen S, Xu M, Lin F, Lee D, Riek P, Graham RM (1999) Phe310 in transmembrane VI of the alpha1B-adrenergic receptor is a key switch residue involved in activation and catecholamine ring aromatic bonding. J Biol Chem 274:16320–16330

    Google Scholar 

  • Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872

    Google Scholar 

  • Cornwell TL, Arnold E, Boerth NJ, Lincoln TM (1994) Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 267:C1405–C1413

    Google Scholar 

  • Erami C, Zhang H, Ho JG, French DM, Faber JE (2002) Alpha(1)-adrenoceptor stimulation directly induces growth of vascular wall in vivo. Am J Physiol Heart Circ Physiol 283:H1577–H1587

    Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  PubMed  Google Scholar 

  • Graham RM, Perez DM, Hwa J, Piascik MT (1996) alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res 78:737–749

    Google Scholar 

  • Greasley PJ, Fanelli F, Scheer A, Abuin L, Nenniger-Tosato M, DeBenedetti PG, Cotecchia S (2001) Mutational and computational analysis of the alpha(1b)-adrenergic receptor. Involvement of basic and hydrophobic residues in receptor activation and G protein coupling. J Biol Chem 276:46485–46494

    Google Scholar 

  • Green SA, Cole G, Jacinto M, Innis M, Liggett SB (1993) A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 268:23116–23121

    Google Scholar 

  • Green SA, Rathz DA, Schuster AJ, Liggett SB (2001) The Ile164 beta(2)-adrenoceptor polymorphism alters salmeterol exosite binding and conventional agonist coupling to G(s). Eur J Pharmacol 421:141–147

    Google Scholar 

  • Hamaguchi N, True TA, Saussy DL Jr, Jeffs PW (1996) Phenylalanine in the second membrane-spanning domain of alpha 1A-adrenergic receptor determines subtype selectivity of dihydropyridine antagonists. Biochemistry 35:14312–14317

    Google Scholar 

  • Hawrylyshyn KA, Michelotti GA, Coge F, Guenin S-P, Schwinn DA (2004) Update on human alpha1-adrenoceptor subtype signaling and genomic organization. Trends Pharmacol Sci 25:449–455

    Google Scholar 

  • Hoehe MR, Berrettini WH, Schwinn DA, Hsieh WT (1992) A two-allele PstI RFLP for the alpha-1C adrenergic receptor gene (ADRA1C). Hum Mol Genet 1:349

    CAS  Google Scholar 

  • Hwa J, Perez DM (1996) The unique nature of the serine interactions for alpha 1-adrenergic receptor agonist binding and activation. J Biol Chem 271:6322–6327

    Google Scholar 

  • Hwa J, Graham RM, Perez DM (1995) Identification of critical determinants of alpha 1-adrenergic receptor subtype selective agonist binding. J Biol Chem 270:23189–23195

    Google Scholar 

  • Kirstein SL, Insel PA (2004) Autonomic nervous system pharmacogenomics: a progress report. Pharmacol Rev 56:31–52

    Google Scholar 

  • Liggett SB, Wagoner LE, Craft LL, Hornung RW, Hoit BD, McIntosh TC, Walsh RA (1998) The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 102:1534–1539

    Google Scholar 

  • Mason DA, Moore JD, Green SA, Liggett SB (1999) A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem 274:12670–12674

    Article  CAS  PubMed  Google Scholar 

  • Mialet Perez J, Rathz DA, Petrashevskaya NN, Hahn HS, Wagoner LE, Schwartz A, Dorn GW, Liggett SB (2003) Beta 1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med 9:1300–1305

    Google Scholar 

  • Michelotti GA, Price DT, Schwinn DA (2000) Alpha 1-adrenergic receptor regulation: basic science and clinical implications. Pharmacol Ther 88:281–309

    Article  CAS  PubMed  Google Scholar 

  • Mimura Y, Kobayashi S, Notoya K, Okabe M, Kimura I, Horikoshi I, Kimura M (1995) Activation by alpha 1-adrenergic agonists of the progression phase in the proliferation of primary cultures of smooth muscle cells in mouse and rat aorta. Biol Pharm Bull 18:1373–1376

    Google Scholar 

  • Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25:2745–2751

    Article  CAS  PubMed  Google Scholar 

  • Piascik MT, Perez DM (2001) Alpha1-adrenergic receptors: new insights and directions. J Pharmacol Exp Ther 298:403–410

    Google Scholar 

  • Porter JE, Perez DM (1999) Characteristics for a salt-bridge switch mutation of the alpha(1b) adrenergic receptor. Altered pharmacology and rescue of constitutive activity. J Biol Chem 274:34535–34538

    Google Scholar 

  • Porter JE, Hwa J, Perez DM (1996) Activation of the alpha1b-adrenergic receptor is initiated by disruption of an interhelical salt bridge constraint. J Biol Chem 271:28318–28323

    Google Scholar 

  • Porton B, Ferreira A, DeLisi LE, Kao HT (2004) A rare polymorphism affects a mitogen-activated protein kinase site in synapsin III: possible relationship to schizophrenia. Biol Psychiatry 55:118–125

    Google Scholar 

  • Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA (1994) Localization of mRNA for three distinct alpha 1-adrenergic receptor subtypes in human tissues: implications for human alpha-adrenergic physiology. Mol Pharmacol 45:171–175

    Google Scholar 

  • Price RR, Morris DP, Biswas G, Smith MP, Schwinn DA (2002) Acute agonist-mediated desensitization of the human alpha 1a-adrenergic receptor is primarily independent of carboxyl terminus regulation: implications for regulation of alpha 1aAR splice variants. J Biol Chem 277:9570–9579

    Google Scholar 

  • Roehrborn CG, Schwinn DA (2004) Alpha1-adrenergic receptors and their inhibitors in lower urinary tract symptoms and benign prostatic hyperplasia. J Urol 171:1029–1035

    Google Scholar 

  • Rokosh DG, Simpson PC (2002) Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 99:9474–9479

    Google Scholar 

  • Rokosh DG, Stewart AF, Chang KC, Bailey BA, Karliner JS, Camacho SA, Long CS, Simpson PC (1996) Alpha1-adrenergic receptor subtype mRNAs are differentially regulated by alpha1-adrenergic and other hypertrophic stimuli in cardiac myocytes in culture and in vivo. Repression of alpha1B and alpha1D but induction of alpha1C. J Biol Chem 271:5839–5843

    Article  CAS  PubMed  Google Scholar 

  • Rudner XL, Berkowitz DE, Booth JV, Funk BL, Cozart KL, D’Amico EB, El-Moalem H, Page SO, Richardson CD, Winters B, Marucci L, Schwinn DA (1999) Subtype specific regulation of human vascular alpha(1)-adrenergic receptors by vessel bed and age. Circulation 100:2336–2343

    Google Scholar 

  • Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ et al (1995) Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues. J Pharmacol Exp Ther 272:134–142

    Google Scholar 

  • Shibata K, Hirasawa A, Moriyama N, Kawabe K, Ogawa S, Tsujimoto G (1996) Alpha 1a-adrenoceptor polymorphism: pharmacological characterization and association with benign prostatic hypertrophy. Br J Pharmacol 118:1403–1408

    CAS  PubMed  Google Scholar 

  • Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB (2002) Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 347:1135–1142

    Google Scholar 

  • Snapir A, Heinonen P, Tuomainen TP, Alhopuro P, Karvonen MK, Lakka TA, Nyyssonen K, Salonen R, Kauhanen J, Valkonen VP, Pesonen U, Koulu M, Scheinin M, Salonen JT (2001) An insertion/deletion polymorphism in the alpha2B-adrenergic receptor gene is a novel genetic risk factor for acute coronary events. J Am Coll Cardiol 37:1516–1522

    Article  CAS  PubMed  Google Scholar 

  • Sofowora GG, Dishy V, Landau R, Xie HG, Prasad HC, Byrne DW, Smiley RM, Kim RB, Wood AJ, Stein CM (2004) Alpha 1A-adrenergic receptor polymorphism and vascular response. Clin Pharmacol Ther 75:539–545

    Google Scholar 

  • Strader CD, Sigal IS, Register RB, Candelore MR, Rands E, Dixon RA (1987) Identification of residues required for ligand binding to the beta-adrenergic receptor. Proc Natl Acad Sci USA 84:4384–4388

    CAS  PubMed  Google Scholar 

  • Svetkey LP, Timmons PZ, Emovon O, Anderson NB, Preis L, Chen YT (1996) Association of hypertension with beta2- and alpha2c10-adrenergic receptor genotype. Hypertension 27:1210–1215

    Google Scholar 

  • Wang XL, Liu SX, McCredie RM, Wilcken DE (1996) Polymorphisms at the 5′-end of the apolipoprotein AI gene and severity of coronary artery disease. J Clin Invest 98:372–377

    Google Scholar 

  • Waugh DJ, Zhao MM, Zuscik MJ, Perez DM (2000) Novel aromatic residues in transmembrane domains IV and V involved in agonist binding at alpha(1a)-adrenergic receptors. J Biol Chem 275:11698–11705

    Google Scholar 

  • Waugh DJ, Gaivin RJ, Zuscik MJ, Gonzalez-Cabrera P, Ross SA, Yun J, Perez DM (2001) Phe-308 and Phe-312 in transmembrane domain 7 are major sites of alpha 1-adrenergic receptor antagonist binding. Imidazoline agonists bind like antagonists. J Biol Chem 276:25366–25371

    Google Scholar 

  • Xiao L, Pimental DR, Amin JK, Singh K, Sawyer DB, Colucci WS (2001) MEK1/2–ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:779–787

    Article  CAS  PubMed  Google Scholar 

  • Xie HG, Kim RB, Stein CM, Gainer JV, Brown NJ, Wood AJ (1999) Alpha1A-adrenergic receptor polymorphism: association with ethnicity but not essential hypertension. Pharmacogenetics 9:651–656

    CAS  PubMed  Google Scholar 

  • Zhao MM, Hwa J, Perez DM (1996) Identification of critical extracellular loop residues involved in alpha 1-adrenergic receptor subtype-selective antagonist binding. Mol Pharmacol 50:1118–1126

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by NIH grants #AG17556 (DAS), #HL67974 (JIR), #HL55005 (TAB), NCRR#RR43 (TAB), NCRR#RR30 (DAS) and a NHGRI Visiting Investigator Program (VIP) Award (DAS), NHGRI (EDG), and the Cedar-Sinai, Board of Governors’ Chair in Medical Genetics (JIR). Dr. Schwinn is a senior fellow in the Center for the Study of Aging and Human Development at Duke University. We would like to take this opportunity to thank Jackie Idol for technical assistance in defining human α1aAR polymorphisms, Gregory A. Michelotti, PhD, for helpful conversations, and Zarrin T. Brooks for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra A. Schwinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, B., Morris, D.P., Smith, M.P. et al. Novel human α1a-adrenoceptor single nucleotide polymorphisms alter receptor pharmacology and biological function. Naunyn-Schmiedeberg's Arch Pharmacol 371, 229–239 (2005). https://doi.org/10.1007/s00210-005-1019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-005-1019-9

Keywords

Navigation