Skip to main content

Advertisement

Log in

Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine

  • Editorial
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Two related lysosphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediate diverse cellular responses through signals transduced by either activation of G-protein coupled receptors or possibly by acting intracellularly. Vascular responses to S1P and SPC measured both in vivo and in dissected vessels show predominantly vasoconstriction with some evidence for vasodilation. Although stimulation with S1P or SPC generally leads to similar vascular responses, the signalling pathways stimulated to produce these responses are often distinct. Nevertheless, mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+, which both increase [Ca2+]i, occur in response to S1P and SPC. Both mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+ occur in response to S1P and SPC. As well, both S1P and SPC induce Ca2+-sensitization in vascular smooth muscle which is mediated through Rho kinase activation. In the endothelium, S1P and SPC stimulate the production of the vasodilator, nitric oxide through activation of endothelial nitric oxide synthase. This activation occurs through phosphorylation by Akt and through binding of Ca2+-calmodulin upon increased [Ca2+]i. These lysosphingolipids also activate cyclooxygenase-2 which produces prostaglandins with both vasoconstrictor and vasodilator properties. A balance between the signals inducing vasodilation versus the signals inducing vasoconstriction will determine the vascular outcome. Thus, perturbations in S1P and SPC concentrations, relative expression of receptors or downstream signalling pathways may provide a mechanism for pathophysiological conditions such as hypertension. Given this background, recent studies examining a potential role for S1P and SPC in hypertension and vascular dysfunction in aging are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alewijnse AE, Michel MC (2006) Sphingosine-1-phosphate and sphingosylphosphorylcholine: two of a kind? Br J Pharmacol 147:347–348

    Google Scholar 

  • Alewijnse AE, Peters SL, Michel MC (2004) Cardiovascular effects of sphingosine-1-phosphate and other sphingomyelin metabolites. Br J Pharmacol 143:666–684

    Article  PubMed  CAS  Google Scholar 

  • Altmann C, Fetscher C, Boyukbas D, Michel MC (2003a) Contraction of mesenteric resistance vessels by sphingosine-1-phosphate and sphingosylphosphorylcholine in aged rats. Naunyn-Schmiedeberg’s Arch Pharmacol 367:R57

    Article  CAS  Google Scholar 

  • Altmann C, Steenpass V, Czyborra P, Hein P, Michel MC (2003b) Comparison of signalling mechanisms involved in rat mesenteric microvessel contraction by noradrenaline and sphingosylphosphorylcholine. Br J Pharmacol 138:261–271

    Article  PubMed  CAS  Google Scholar 

  • Ancellin N, Colmont C, Su J, Li Q, Mittereder N, Chae SS, Stefansson S, Liau G, Hla T (2002) Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J Biol Chem 277:6667–6675

    Article  PubMed  CAS  Google Scholar 

  • Anliker B, Chun J (2004) Lysophospholipid G protein-coupled receptors. J Biol Chem 279:20555–20558

    Article  PubMed  CAS  Google Scholar 

  • Aoki S, Yatomi Y, Ohta M, Osada M, Kazama F, Satoh K, Nakahara K, Ozaki Y (2005) Sphingosine 1-phosphate-related metabolism in the blood vessel. J Biochem (Tokyo) 138:47–55

    CAS  Google Scholar 

  • Bernatchez PN, Tremblay F, Rollin S, Neagoe PE, Sirois MG (2003) Sphingosine 1-phosphate effect on endothelial cell PAF synthesis: role in cellular migration. J Cell Biochem 90:719–731

    Article  PubMed  CAS  Google Scholar 

  • Bischoff A, Czyborra P, Fetscher C, Meyer Zu Heringdorf D, Jakobs KH, Michel MC (2000a) Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. Br J Pharmacol 130:1871–1877

    Article  PubMed  CAS  Google Scholar 

  • Bischoff A, Czyborra P, Meyer Zu Heringdorf D, Jakobs KH, Michel MC (2000b) Sphingosine-1-phosphate reduces rat renal and mesenteric blood flow in vivo in a pertussis toxin-sensitive manner. Br J Pharmacol 130:1878–1883

    Article  PubMed  CAS  Google Scholar 

  • Bischoff A, Finger J, Michel MC (2001a) Nifedipine inhibits sphinogosine-1-phosphate-induced renovascular contraction in vitro and in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 364:179–182

    Article  PubMed  CAS  Google Scholar 

  • Bischoff A, Meyer Zu Heringdorf D, Jakobs KH, Michel MC (2001b) Lysosphingolipid receptor-mediated diuresis and natriuresis in anaesthetized rats. Br J Pharmacol 132:1925–1933

    Article  PubMed  CAS  Google Scholar 

  • Blom T, Slotte JP, Pitson SM, Tornquist K (2005) Enhancement of intracellular sphingosine-1-phosphate production by inositol 1,4,5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: endogenous sphingosine-1-phosphate as a modulator of the calcium response. Cell Signal 17:827–836

    Article  PubMed  CAS  Google Scholar 

  • Bolz SS, Vogel L, Sollinger D, Derwand R, Boer C, Pitson SM, Spiegel S, Pohl U (2003a) Sphingosine kinase modulates microvascular tone and myogenic responses through activation of RhoA/Rho kinase. Circulation 108:342–347

    Article  PubMed  CAS  Google Scholar 

  • Bolz SS, Vogel L, Sollinger D, Derwand R, de Wit C, Loirand G, Pohl U (2003b) Nitric oxide-induced decrease in calcium sensitivity of resistance arteries is attributable to activation of the myosin light chain phosphatase and antagonized by the RhoA/Rho kinase pathway. Circulation 107:3081–3087

    Article  PubMed  CAS  Google Scholar 

  • Boujaoude LC, Bradshaw-Wilder C, Mao C, Cohn J, Ogretmen B, Hannun YA, Obeid LM (2001) Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. J Biol Chem 276:35258–35264

    Article  PubMed  CAS  Google Scholar 

  • Brindley DN (2004) Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J Cell Biochem 92:900–912

    Article  PubMed  CAS  Google Scholar 

  • Bu S, Yamanaka M, Pei H, Bielawska A, Bielawski J, Hannun YA, Obeid L, Trojanowska M (2006) Dihydrosphingosine 1-phosphate stimulates MMP1 gene expression via activation of ERK1/2-Ets1 pathway in human fibroblasts. Faseb J 20:184–186

    PubMed  CAS  Google Scholar 

  • Budzyn K, Marley PD, Sobey CG (2006) Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci 27:97–104

    Article  PubMed  CAS  Google Scholar 

  • Chalfant CE, Spiegel S (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 118:4605–4612

    Article  PubMed  CAS  Google Scholar 

  • Chambliss KL, Shaul PW (2002) Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev 23:665–686

    Article  PubMed  CAS  Google Scholar 

  • Chen PF, Chin TY, Chueh SH (1998) Ca2+ signaling induced by sphingosylphosphorylcholine and sphingosine 1-phosphate via distinct mechanisms in rat glomerular mesangial cells. Kidney Int 54:1470–1483

    Article  PubMed  CAS  Google Scholar 

  • Chikani G, Zhu W, Smart EJ (2004) Lipids: potential regulators of nitric oxide generation. Am J Physiol Endocrinol Metab 287:E386–E389

    Article  PubMed  CAS  Google Scholar 

  • Chin TY, Chueh SH (1998) Sphingosylphosphorylcholine stimulates mitogen-activated protein kinase via a Ca2+-dependent pathway. Am J Physiol 275:C1255–C1263

    PubMed  CAS  Google Scholar 

  • Chin TY, Chueh SH (2000) Distinct Ca(2+) signalling mechanisms induced by ATP and sphingosylphosphorylcholine in porcine aortic smooth muscle cells. Br J Pharmacol 129:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Chrissobolis S, Budzyn K, Marley PD, Sobey CG (2004) Evidence that estrogen suppresses rho-kinase function in the cerebral circulation in vivo. Stroke 35:2200–2205

    Article  PubMed  CAS  Google Scholar 

  • Chua CC, Hamdy RC, Chua BH (1998) Upregulation of endothelin-1 production by lysophosphatidic acid in rat aortic endothelial cells. Biochim Biophys Acta 1405:29–34

    Article  PubMed  CAS  Google Scholar 

  • Clair T, Aoki J, Koh E, Bandle RW, Nam SW, Ptaszynska MM, Mills GB, Schiffmann E, Liotta LA, Stracke ML (2003) Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res 63:5446–5453

    PubMed  CAS  Google Scholar 

  • Cooper LT, Cooke JP, Dzau VJ (1994) The vasculopathy of aging. J Gerontol 49:B191–196

    PubMed  CAS  Google Scholar 

  • Coussin F, Scott RH, Nixon GF (2003) Sphingosine 1-phosphate induces CREB activation in rat cerebral artery via a protein kinase C-mediated inhibition of voltage-gated K+ channels. Biochem Pharmacol 66:1861–1870

    Article  PubMed  CAS  Google Scholar 

  • Coussin F, Scott RH, Wise A, Nixon GF (2002) Comparison of sphingosine 1-phosphate-induced intracellular signaling pathways in vascular smooth muscles: differential role in vasoconstriction. Circ Res 91:151–157

    Article  PubMed  CAS  Google Scholar 

  • Czyborra C, Bischoff A, Michel MC (2006) Indomethacin differentiates renal effects of sphingosine-1-phosphate and sphingosylphosphorylcholine. Naunyn-Schmiedeberg’s Arch Pharmacol: in this issue DOI 10.1007/s00210-006-0037-6

  • Damirin A, Tomura H, Komachi M, Tobo M, Sato K, Mogi C, Nochi H, Tamoto K, Okajima F (2005) Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells. Mol Pharmacol 67:1177–1185

    PubMed  CAS  Google Scholar 

  • Dantas AP, Igarashi J, Michel T (2003) Sphingosine 1-phosphate and control of vascular tone. Am J Physiol Heart Circ Physiol 284:H2045–H2052

    PubMed  CAS  Google Scholar 

  • Davaille J, Gallois C, Habib A, Li L, Mallat A, Tao J, Levade T, Lotersztajn S (2000) Antiproliferative properties of sphingosine 1-phosphate in human hepatic myofibroblasts. A cyclooxygenase-2 mediated pathway. J Biol Chem 275:34628–34633

    Article  PubMed  CAS  Google Scholar 

  • Davidge ST (2001) Prostaglandin H synthase and vascular function. Circ Res 89:650–660

    PubMed  CAS  Google Scholar 

  • De Palma C, Meacci E, Perrotta C, Bruni P, Clementi E (2006) Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol 26:99–105

    Article  PubMed  CAS  Google Scholar 

  • Deutschman DH, Carstens JS, Klepper RL, Smith WS, Page MT, Young TR, Gleason LA, Nakajima N, Sabbadini RA (2003) Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J 146:62–68

    Article  PubMed  CAS  Google Scholar 

  • Dudzinski DM, Igarashi J, Greif D, Michel T (2006) The Regulation and Pharmacology of Endothelial Nitric Oxide Synthase. Annu Rev Pharmacol Toxicol 46:235–276

    Article  PubMed  CAS  Google Scholar 

  • Forrest M, Sun SY, Hajdu R, Bergstrom J, Card D, Doherty G, Hale J, Keohane C, Meyers C, Milligan J, Mills S, Nomura N, Rosen H, Rosenbach M, Shei GJ, Singer, II, Tian M, West S, White V, Xie J, Proia RL, Mandala S (2004) Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther 309:758–768

    Article  PubMed  CAS  Google Scholar 

  • Fukata Y, Amano M, Kaibuchi K (2001) Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22:32–39

    Article  PubMed  CAS  Google Scholar 

  • Gardell SE, Dubi AE, Chun J (2006) Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 12:65–75

    Google Scholar 

  • Gong M, Wilson M, Kelly T, Su W, Dressman J, Kincer J, Matveev SV, Guo L, Guerin T, Li XA, Zhu W, Uittenbogaard A, Smart EJ (2003) HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. J Clin Invest 111:1579–1587

    Article  PubMed  CAS  Google Scholar 

  • Gouni-Berthold I, Sachinidis A (2002) Does the coronary risk factor low density lipoprotein alter growth and signaling in vascular smooth muscle cells? Faseb J 16:1477–1487

    Article  PubMed  CAS  Google Scholar 

  • Hedemann J, Fetscher C, Michel MC (2004) Comparison of noradrenaline and lysosphingolipid-induced vasoconstriction in mouse and rat small mesenteric arteries. Auton Autacoid Pharmacol 24:77–85

    Article  PubMed  CAS  Google Scholar 

  • Hemmings DG, Xu Y, Davidge ST (2004) Sphingosine 1-phosphate-induced vasoconstriction is elevated in mesenteric resistance arteries from aged female rats. Br J Pharmacol 143:276–284

    Article  PubMed  CAS  Google Scholar 

  • Hemmings DG, Hudson NK, Halliday D, O’Hara M, Baker PN, Davidge ST, Taggart MJ (2006) Sphingosine-1-Phosphate Acts via Rho-Associated Kinase and Nitric Oxide to Regulate Human Placental Vascular Tone. Biol Reprod 74:88–94

    Article  PubMed  CAS  Google Scholar 

  • Hobson JP, Rosenfeldt HM, Barak LS, Olivera A, Poulton S, Caron MG, Milstien S and Spiegel S (2001) Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291:1800–1803

    Article  PubMed  CAS  Google Scholar 

  • Hsiao SH, Constable PD, Smith GW, Haschek WM (2005) Effects of exogenous sphinganine, sphingosine, and sphingosine-1-phosphate on relaxation and contraction of porcine thoracic aortic and pulmonary arterial rings. Toxicol Sci 86:194–199

    Article  PubMed  CAS  Google Scholar 

  • Igarashi J, Bernier SG, Michel T (2001) Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase. differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. J Biol Chem 276:12420–12426

    Article  PubMed  CAS  Google Scholar 

  • Igarashi J, Michel T (2000) Agonist-modulated targeting of the EDG-1 receptor to plasmalemmal caveolae. eNOS activation by sphingosine 1-phosphate and the role of caveolin-1 in sphingolipid signal transduction. J Biol Chem 275:32363–32370

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Nagashima K, Yanase M, Tomiya T, Arai M, Inoue Y, Tejima K, Nishikawa T, Watanabe N, Omata M, Fujiwara K (2004) Sphingosine 1-phosphate enhances portal pressure in isolated perfused liver via S1P2 with Rho activation. Biochem Biophys Res Commun 320:754–759

    Article  PubMed  CAS  Google Scholar 

  • Ishii I, Ye X, Friedman B, Kawamura S, Contos JJ, Kingsbury MA, Yang AH, Zhang G, Brown JH, Chun J (2002) Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. J Biol Chem 277:25152–25159

    Article  PubMed  CAS  Google Scholar 

  • Jang GJ, Ahn DS, Cho YE, Morgan KG, Lee YH (2005) C(2)-ceramide induces vasodilation in phenylephrine-induced pre-contracted rat thoracic aorta: role of RhoA/Rho-kinase and intracellular Ca(2+) concentration. Naunyn-Schmiedeberg’s Arch Pharmacol 372:242–250

    Article  PubMed  CAS  Google Scholar 

  • Kawamori T, Osta W, Johnson KR, Pettus BJ, Bielawski J, Tanaka T, Wargovich MJ, Reddy BS, Hannun YA, Obeid LM, Zhou D (2006) Sphingosine kinase 1 is up-regulated in colon carcinogenesis. Faseb J 20:386–388

    PubMed  CAS  Google Scholar 

  • Kim JI, Jo EJ, Lee HY, Cha MS, Min JK, Choi CH, Lee YM, Choi YA, Baek SH, Ryu SH, Lee KS, Kwak JY, Bae YS (2003) Sphingosine 1-phosphate in amniotic fluid modulates cyclooxygenase-2 expression in human amnion-derived WISH cells. J Biol Chem 278:31731–31736

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Ren J, Jiang Y, Ebrahem Q, Tipps R, Cristina K, Xiao YJ, Qiao J, Taylor KL, Lum H, Anand-Apte B, Xu Y (2005a) GPR4 plays a critical role in endothelial cell function and mediates the effects of sphingosylphosphorylcholine. Faseb J 19:819–821

    PubMed  CAS  Google Scholar 

  • Kim MY, Liang GH, Kim JA, Kim YJ, Oh S, Suh SH (2005b) Sphingosine-1-phosphate activates BKCa channels independently of G-protein coupled receptor in human endothelial cells. Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00353.2005

  • Kluk MJ, Hla T (2002) Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta 1582:72–80

    PubMed  CAS  Google Scholar 

  • Kwon YG, Min JK, Kim KM, Lee DJ, Billiar TR, Kim YM (2001) Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem 276:10627–10633

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Kim J, Sohn U (2002) Sphingosylphosphorylcholine-induced contraction of feline ileal smooth muscle cells is mediated by Galphai3 protein and MAPK. Cell Signal 14:989–997

    Article  PubMed  CAS  Google Scholar 

  • Levkau B, Hermann S, Theilmeier G, van der Giet M, Chun J, Schober O, Schafers M (2004) High-density lipoprotein stimulates myocardial perfusion in vivo. Circulation 110:3355–3359

    Article  PubMed  CAS  Google Scholar 

  • Liliom K, Sun G, Bunemann M, Virag T, Nusser N, Baker DL, Wang DA, Fabian MJ, Brandts B, Bender K, Eickel A, Malik KU, Miller DD, Desiderio DM, Tigyi G, Pott L (2001) Sphingosylphosphocholine is a naturally occurring lipid mediator in blood plasma: a possible role in regulating cardiac function via sphingolipid receptors. Biochem J 355:189–197

    Article  PubMed  CAS  Google Scholar 

  • Maguire JJ, Davenport AP (2005) Regulation of vascular reactivity by established and emerging GPCRs. Trends Pharmacol Sci 26:448–454

    PubMed  CAS  Google Scholar 

  • Mathieson FA, Nixon GF (2006) Sphingolipids differentially regulate mitogen-activated protein kinases and intracellular Ca(2+) in vascular smooth muscle: effects on CREB activation. Br J Pharmacol 147:351–359

    Google Scholar 

  • Meyer Zu Heringdorf D (2004) Lysophospholipid receptor-dependent and -independent calcium signaling. J Cell Biochem 92:937–948

    Article  PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf D, Lass H, Kuchar I, Lipinski M, Alemany R, Rumenapp U, Jakobs KH (2001) Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. Eur J Pharmacol 414:145–154

    Article  PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf D, Himmel HM, Jakobs KH (2002) Sphingosylphosphorylcholine-biological functions and mechanisms of action. Biochim Biophys Acta 1582:178–189

    PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf D, Liliom K, Schaefer M, Danneberg K, Jaggar JH, Tigyi G, Jakobs KH (2003) Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+ mobilization independently of G-protein-coupled receptors. FEBS Lett 554:443–449

    Article  PubMed  CAS  Google Scholar 

  • Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  PubMed  CAS  Google Scholar 

  • Mogami K, Mizukami Y, Todoroki-Ikeda N, Ohmura M, Yoshida K, Miwa S, Matsuzaki M, Matsuda M, Kobayashi S (1999) Sphingosylphosphorylcholine induces cytosolic Ca(2+) elevation in endothelial cells in situ and causes endothelium-dependent relaxation through nitric oxide production in bovine coronary artery. FEBS Lett 457:375–380

    Article  PubMed  CAS  Google Scholar 

  • Morales-Ruiz M, Lee MJ, Zollner S, Gratton JP, Scotland R, Shiojima I, Walsh K, Hla T, Sessa WC (2001) Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem 276:19672–19677

    Article  PubMed  CAS  Google Scholar 

  • Mukai Y, Shimokawa H, Matoba T, Kandabashi T, Satoh S, Hiroki J, Kaibuchi K, Takeshita A (2001) Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. Faseb J 15:1062–1064

    PubMed  CAS  Google Scholar 

  • Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, Ui M, Okajima F (2000) Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J 352:809–815

    Article  PubMed  CAS  Google Scholar 

  • Murohara T, Kugiyama K, Ohgushi M, Sugiyama S, Ohta Y, Yasue H (1994) LPC in oxidized LDL elicits vasocontraction and inhibits endothelium- dependent relaxation. Am J Physiol 267:H2441–H2449

    PubMed  CAS  Google Scholar 

  • Nakamura H, Takashiro Y, Hirabayashi T, Horie S, Koide Y, Nishida A, Murayama T (2004) Effects of synthetic sphingosine-1-phosphate analogs on arachidonic acid metabolism and cell death. Biochem Pharmacol 68:2187–2196

    PubMed  CAS  Google Scholar 

  • Nakao F, Kobayashi S, Mogami K, Mizukami Y, Shirao S, Miwa S, Todoroki-Ikeda N, Ito M, Matsuzaki M (2002) Involvement of Src family protein tyrosine kinases in Ca(2+) sensitization of coronary artery contraction mediated by a sphingosylphosphorylcholine-Rho-kinase pathway. Circ Res 91:953–960

    Article  PubMed  CAS  Google Scholar 

  • Nofer JR, Assmann G (2005) Atheroprotective effects of high-density lipoprotein-associated lysosphingolipids. Trends Cardiovasc Med 15:265–271

    Article  PubMed  CAS  Google Scholar 

  • Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113:569–581

    Article  PubMed  CAS  Google Scholar 

  • Ohmori T, Yatomi Y, Osada M, Kazama F, Takafuta T, Ikeda H, Ozaki Y (2003) Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P(2). Cardiovasc Res 58:170–177

    Article  PubMed  CAS  Google Scholar 

  • Okajima F (2002) Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta 1582:132–137

    PubMed  CAS  Google Scholar 

  • Olivera A, Spiegel S (2001) Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins Other Lipid Mediat 64:123–134

    Article  PubMed  CAS  Google Scholar 

  • Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, Morrow J, Chalfant CE, Obeid LM, Hannun YA (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. Faseb J 17:1411–1421

    Article  PubMed  CAS  Google Scholar 

  • Pettus BJ, Kitatani K, Chalfant CE, Taha TA, Kawamori T, Bielawski J, Obeid LM, Hannun YA (2005) The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol Pharmacol 68:330–335

    PubMed  CAS  Google Scholar 

  • Rikitake Y, Hirata K, Kawashima S, Ozaki M, Takahashi T, Ogawa W, Inoue N, Yokoyama M (2002) Involvement of endothelial nitric oxide in sphingosine-1-phosphate-induced angiogenesis. Arterioscler Thromb Vasc Biol 22:108–114

    Article  PubMed  CAS  Google Scholar 

  • Roviezzo F, Bucci M, Delisle C, Brancaleone V, Di Lorenzo A, Mayo IP, Fiorucci S, Fontana A, Gratton JP, Cirino G (2006) Essential requirement for sphingosine kinase activity in eNOS-dependent NO release and vasorelaxation. Faseb J 20:340–342

    PubMed  CAS  Google Scholar 

  • Ryu SK, Ahn DS, Cho YE, Choi SK, Kim YH, Morgan KG, Lee YH (2006) Augmented sphingosylphosphorylcholine-induced Ca2+-sensitization of mesenteric artery contraction in spontaneously hypertensive rat. Naunyn-Schmiedeberg’s Arch Pharmacol: in this issue DOI 10.1007/s00210-006-0036-7

  • Salomone S, Yoshimura S, Reuter U, Foley M, Thomas SS, Moskowitz MA, Waeber C (2003) S1P(3) receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. Eur J Pharmacol 469:125–134

    Article  PubMed  CAS  Google Scholar 

  • Seol GH, Kim MY, Liang GH, Kim JA, Kim YJ, Oh S, Suh SH (2005) Sphingosine-1-phosphate-induced intracellular ca(2+) mobilization in human endothelial cells. Endothelium 12:263–269

    Article  PubMed  CAS  Google Scholar 

  • Shaul PW, Mineo C (2004) HDL action on the vascular wall: is the answer NO? J Clin Invest 113:509–513

    Article  PubMed  CAS  Google Scholar 

  • Shirao S, Kashiwagi S, Sato M, Miwa S, Nakao F, Kurokawa T, Todoroki-Ikeda N, Mogami K, Mizukami Y, Kuriyama S, Haze K, Suzuki M, Kobayashi S (2002) Sphingosylphosphorylcholine is a novel messenger for Rho-kinase-mediated Ca2+ sensitization in the bovine cerebral artery: unimportant role for protein kinase C. Circ Res 91:112–119

    Article  PubMed  CAS  Google Scholar 

  • Siess W, Tigyi G (2004) Thrombogenic and atherogenic activities of lysophosphatidic acid. J Cell Biochem 92:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Skaznik-Wikiel ME, Kaneko-Tarui T, Kashiwagi A, Pru JK (2006) Sphingosine-1-Phosphate receptor expression and signaling correlate with uterine prostaglandin-endoperoxide synthase 2 expression and angiogenesis during early pregnancy. Biol Reprod 74:569–576

    Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2003) Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans 31:1216–1219

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama A, Yatomi Y, Ozaki Y, Hashimoto K (2000) Sphingosine 1-phosphate induces sinus tachycardia and coronary vasoconstriction in the canine heart. Cardiovasc Res 46:119–125

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto T, Jin ZG, Berk BC (2002) Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biol Chem 277:42997–43001

    Article  PubMed  CAS  Google Scholar 

  • Thomas GD, Snetkov VA, Patel R, Leach RM, Aaronson PI, Ward JP (2005) Sphingosylphosphorylcholine-induced vasoconstriction of pulmonary artery: activation of non-store-operated Ca2+ entry. Cardiovasc Res 68:56–64

    Article  PubMed  CAS  Google Scholar 

  • Tigyi G, Hong L, Yakubu M, Parfenova H, Shibata M, Leffler CW (1995) Lysophosphatidic acid alters cerebrovascular reactivity in piglets. Am J Physiol 268:H2048–H2055

    PubMed  CAS  Google Scholar 

  • Todoroki-Ikeda N, Mizukami Y, Mogami K, Kusuda T, Yamamoto K, Miyake T, Sato M, Suzuki S, Yamagata H, Hokazono Y, Kobayashi S (2000) Sphingosylphosphorylcholine induces Ca(2+)-sensitization of vascular smooth muscle contraction: possible involvement of rho-kinase. FEBS Lett 482:85–90

    Article  PubMed  CAS  Google Scholar 

  • Tolle M, Levkau B, Keul P, Brinkmann V, Giebing G, Schonfelder G, Schafers M, von Wnuck Lipinski K, Jankowski J, Jankowski V, Chun J, Zidek W, Van der Giet M (2005) Immunomodulator FTY720 Induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ Res 96:913–920

    Article  PubMed  CAS  Google Scholar 

  • Tosaka M, Okajima F, Hashiba Y, Saito N, Nagano T, Watanabe T, Kimura T, Sasaki T (2001) Sphingosine 1-phosphate contracts canine basilar arteries in vitro and in vivo: possible role in pathogenesis of cerebral vasospasm. Stroke 32:2913–2919

    PubMed  CAS  Google Scholar 

  • Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, Takuwa Y (2004) Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem 279:12300–12311

    Article  PubMed  CAS  Google Scholar 

  • van Meeteren LA, Ruurs P, Christodoulou E, Goding JW, Takakusa H, Kikuchi K, Perrakis A, Nagano T, Moolenaar WH (2005) Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem 280:21155–21161

    Article  PubMed  CAS  Google Scholar 

  • Watterson KR, Ratz PH, Spiegel S (2005) The role of sphingosine-1-phosphate in smooth muscle contraction. Cell Signal 17:289–298

    Article  PubMed  CAS  Google Scholar 

  • Yatomi Y, Ruan F, Hakomori S, Igarashi Y (1995) Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 86:193–202

    PubMed  CAS  Google Scholar 

  • Young KW, Bootman MD, Channing DR, Lipp P, Maycox PR, Meakin J, Challiss RA, Nahorski SR (2000) Lysophosphatidic acid-induced Ca2+ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. J Biol Chem 275:38532–38539

    Article  PubMed  CAS  Google Scholar 

  • Zheng T, Li W, Wang J, Altura BT, Altura BM (2000) Effects of neutral sphingomyelinase on phenylephrine-induced vasoconstriction and Ca(2+) mobilization in rat aortic smooth muscle. Eur J Pharmacol 391:127–135

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, He P (2005) Platelet-activating factor increases endothelial [Ca2+]i and NO production in individually perfused intact microvessels. Am J Physiol Heart Circ Physiol 288:H2869–H2877

    Article  PubMed  CAS  Google Scholar 

  • zu Heringdorf DM, Vincent ME, Lipinski M, Danneberg K, Stropp U, Wang DA, Tigyi G, Jakobs KH (2003) Inhibition of Ca(2+) signalling by the sphingosine 1-phosphate receptor S1P(1). Cell Signal 15:677–687

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I thank Dr. David Brindley for his critical reading of the manuscript and for his insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise G. Hemmings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmings, D.G. Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Naunyn Schmied Arch Pharmacol 373, 18–29 (2006). https://doi.org/10.1007/s00210-006-0046-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0046-5

Keywords

Navigation