Skip to main content
Log in

Influence of the SLCO1B1*1b and *5 haplotypes on pravastatin’s cholesterol lowering capabilities and basal sterol serum levels

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We previously showed that variant SLCO1B1 haplotype *1b (A388G) accelerates and that *5 (T521C) delays hepatocellular uptake of the HMG-CoA reductase inhibitor pravastatin [Mwinyi et al. (2004): Clin Pharmacol Ther 75:415–421]. In the present study we checked for differential effects of variant SLCO1B1 haplotypes on hepatocellular cholesterol synthesis. We analyzed the serum levels of cholesterol, lathosterol, and campesterol in healthy white males which had been grouped on the basis of their SLCO1B1 haplotype: *1a (n=10), *1b (n=10), and *5 (n=8). The subjects received a single oral dose of 40 mg pravastatin. Cholesterol and lathosterol levels were lower in all subjects following pravastatin intake for up to 24. Median levels 6 h post-dosing of lathosterol decreased in each SLCO1B1 haplotype group in the rank order of *1b (−0.11 mg dl–1; min–max: −0.20 to −0.04; p=0.005) > *1a (−0.09 mg dl–1; min–max: −0.22 to −0.05; p=0.005) > *5 (−0.07 mg dl–1; min–max: −0.17 to −0.05; p=0.012). Lathosterol median-change values were significantly greater in haplotype *1b than in haplotype *5 individuals (p=0.041, non-adjusted), which was congruent with the extent of mean changes in lathosterol-to-cholesterol ratios, although the latter did not reach statistical significance. Post-treatment serum levels of campesterol were not affected by SLCO1B1 haplotype. Interestingly, sterol basal serum levels tended to be highest in *1b carriers, followed by those in *1a and *5 individuals, with significant differences in lathosterol concentrations between the *1b and *5 (p=0.041, non-adjusted) haplotype group. Our findings suggest an association of SLCO1B1*1b and *5 haplotypes to pravastatin’s inhibition of the hepatocellular HMG-CoA reductase. Furthermore, SLCO1B1 haplotypes seem to play a role in basal cholesterol homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Chiang JYL (1998) Regulation of bile acid synthesis. Front Biosci 3:D176–D193

    PubMed  CAS  Google Scholar 

  • Fuchs M (2003) Bile acid regulation of hepatic physiology: III. Regulation of bile acid synthesis: past progress and future challenges. Am J Physiol Gastrointest Liver Physiol 284:G551–G557

    PubMed  CAS  Google Scholar 

  • Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Pandak WM, Hylemon PB (2002) LXR alpha is the dominant regulator of CYP7A1 transcription. Biochem Biophys Res Commun 293:228–243

    Google Scholar 

  • Hagenbuch B, Meier PJ (1996) Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Semin Liver Dis 16:129–136

    PubMed  CAS  Google Scholar 

  • Hatanaka T (2000) Clinical pharmacokinetics of pravastatin: mechanisms of pharmacokinetic events. Clin Pharmacokinet 39:397–412

    Article  PubMed  CAS  Google Scholar 

  • Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159:2647–2658

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka H, Konno K, Naganuma H, Nishimura K, Kouzuki H, Suzuki H, Sugiyama Y (1998) Transport of temocaprilat into rat hepatocytes: role of organic anion transporting polypeptide. J Pharmacol Exp Ther 287:37–42

    PubMed  CAS  Google Scholar 

  • Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B (2001) Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:525–533

    Article  PubMed  CAS  Google Scholar 

  • Marzolini C, Tirona RG, Kim RB (2004) Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 5:273–282

    Article  PubMed  CAS  Google Scholar 

  • Michalski C, Cui Y, Nies AT, Nuessler AK, Neuhaus P, Zanger UM, Klein K, Eichelbaum M, Keppler D, Konig J (2002) A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J Biol Chem 277:43058–43063

    Article  PubMed  CAS  Google Scholar 

  • Mwinyi J, Johne A, Bauer S, Roots I, Gerloff T (2004) Evidence for inverse effects of OATP1B1 (SLC21A6) *5 and *1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther 75:415–421

    Article  PubMed  CAS  Google Scholar 

  • Myant NB, Mitropoulos KA (1977) Cholesterol 7α-hydroxylase. J Lipid Res 18:135–153

    PubMed  CAS  Google Scholar 

  • Nakai D, Nakagomi R, Furuta Y, Tokui T, Abe T, Ikeda T, Nishimura K (2001) Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharmacol Exp Ther 297:861–867

    PubMed  CAS  Google Scholar 

  • Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M, Kyrklund C, Backman JT, Kerb R, Schwab M, Neuvonen PJ, Eichelbaum M, Kivisto KT (2004) High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP1B1, SLCO1B1). Pharmacogenetics 14:429–440

    Article  PubMed  CAS  Google Scholar 

  • Niemi M, Neuvonen PJ, Hofmann U, Backmann JT, Schwab M, Lutjohann D, von Bergmann K, Eichelbaum M, Kivisto KT (2005) Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenetics and Genomics 15:303–309

    Article  PubMed  CAS  Google Scholar 

  • Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, Takane H, Irie S, Kusuhara H, Urasaki Y, Urae A, Higuchi S, Otsubo K, Sugiyama Y (2003) Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 73:554–65

    Article  PubMed  CAS  Google Scholar 

  • Nozawa T, Nakajima M, Tamai I, Noda K, Nezu J, Sai Y, Tsuji A, Yokoi T (2002) Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allelic frequencies in the Japanese population and functional analysis. J Pharmacol Exp Ther 302:804–13

    Article  PubMed  CAS  Google Scholar 

  • Schroepfer JG (2000) Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev 80:361–554

    PubMed  CAS  Google Scholar 

  • Sudhop T, Lutjohann D, Kodal A, Igel M, Tribble DL, Shah S, Perevozskaya I, von Bergmann K (2002) Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 106:1943–1948

    Article  PubMed  CAS  Google Scholar 

  • Tachibana-Iimori R, Tabara Y, Kusuhara H, Kohara K, Kawamoto R, Nakura J, Tokunaga K, Kondo I, Sugiyama Y, Miki T (2004) Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 19:375–380

    Article  PubMed  CAS  Google Scholar 

  • Tamai I, Nozawa T, Koshida M, Nezu J, Sai Y, Tsuji A (2001) Functional characterization of human organic anion transporting polypeptide B (OATP1B1) in comparison with liver-specific OATP1B1. Pharm Res 18:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Tamasawa N, Hayakari M, Murakami H, Matsui J, Suda T (1997) Reduction of oxysterol levels up-regulates HMG-CoA reductase activity in rat liver. Atherosclerosis 131:237–242

    Article  PubMed  CAS  Google Scholar 

  • Tirona RG, Leake BF, Merino G, Kim RB (2001) Polymorphisms in OATP1B1: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 276:35669–35675

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Ulrike Ehlert for her skillful technical assistance. This work was supported by the German Federal Ministry of Education and Research (BMBF), grant no. 03/4507 (InnoRegio Health Region Berlin-Buch-Pharmacogenomic optimization of drug therapy and drug development) given to Cenimed GmbH, Center for Individualized Medicine, Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gerloff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerloff, T., Schaefer, M., Mwinyi, J. et al. Influence of the SLCO1B1*1b and *5 haplotypes on pravastatin’s cholesterol lowering capabilities and basal sterol serum levels. Naunyn Schmied Arch Pharmacol 373, 45–50 (2006). https://doi.org/10.1007/s00210-006-0053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0053-6

Keywords

Navigation