Skip to main content

Advertisement

Log in

The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from β3-adrenoceptor agonists

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Although β3-adrenoceptor (β3AR) agonists have not become drugs for the treatment of obesity or diabetes, they offer perspectives on obesity drug discovery, the physiology of energy expenditure and receptor pharmacology. β3AR agonists, some of which also stimulate other βARs in humans, selectively stimulate fat oxidation in rodents and humans. This appears to be why they improve insulin sensitivity and reduce body fat whilst preserving lean body mass. Regulatory authorities ask that novel anti-obesity drugs improve insulin sensitivity and reduce mainly body fat. Drugs that act on different targets to stimulate fat oxidation may also offer these benefits. Stimulation of energy expenditure may be easy to detect only when the sympathetic nervous system is activated. Leptin resembles β3AR agonists in that it increases fat oxidation, energy expenditure and insulin sensitivity. This is partly because it raises sympathetic activity, but it may also promote fat oxidation by directly stimulating muscle leptin receptors. The β1AR and β2AR can, like the β3AR, display atypical pharmacologies. Moreover, the β3AR can display variable pharmacologies of its own, depending on the radioligand used in binding studies or the functional response measured. Studies on the β3AR demonstrate both the difficulties of predicting the in vivo effects of agonist drugs from in vitro data and that there may be opportunities for identifying drugs that act at a single receptor but have different profiles in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham R, Zed C, Mitchell T, Parr J, Wynn V (1987) The effect of a novel β-agonist BRL 26830A on weight and protein loss in obese patients. Int J Obes 11:306A

    Google Scholar 

  • Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613–2616

    PubMed  CAS  Google Scholar 

  • Abu-Elheiga L, Oh W, Kordari P, Wakil SJ (2003) Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S A 100:10207–10212

    PubMed  CAS  Google Scholar 

  • Alberts P, Nilsson C, Selen G, Engblom LO, Edling NH, Norling S, Klingstrom G, Larsson C, Forsgren M, Ashkzari M, Nilsson CE, Fiedler M, Bergqvist E, Ohman B, Bjorkstrand E, Abrahmsen LB (2003) Selective inhibition of 11 β-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains. Endocrinology 144:4755–4762

    PubMed  CAS  Google Scholar 

  • Almond RE, Cawthorne MA, Enser M (1988) Muscles of diabetic (db/db) mice: fibre size, fibre type and the effects of a thermogenic, β-adrenoceptor agonist. Int J Obes 12:81–91

    PubMed  CAS  Google Scholar 

  • Alonso LG, Maren TH (1955) Effect of food restriction on body composition of hereditary obese mice. Am J Physiol 183:284–290

    PubMed  CAS  Google Scholar 

  • Arch JR (1981) The contribution of increased thermogenesis to the effect of anorectic drugs on body composition in mice. Am J Clin Nutr 34:2763–2769

    PubMed  CAS  Google Scholar 

  • Arch JRS (2000) β3-adrenoreceptor ligands and the pharmacology of the β3-adrenoreceptor. In: Strosberg A (ed) The b3-adrenoreceptor. Taylor and Francis, London, pp 48–76

    Google Scholar 

  • Arch JR (2002) β3-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 440:99–107

    PubMed  CAS  Google Scholar 

  • Arch JRS (2007) Comment on: Schmidt MI, Duncan BB, Vigo A et al (2006) Leptin and incident type 2 diabetes: risk or protection? Diabetologia 50:239–240

    Google Scholar 

  • Arch JR, Ainsworth AT (1983) Thermogenic and antiobesity activity of a novel β-adrenoceptor agonist (BRL 26830A) in mice and rats. Am J Clin Nutr 38:549–558

    PubMed  CAS  Google Scholar 

  • Arch JRS, Kaumann AJ (1993) β3 and atypical β-adrenoceptors. Med Res Rev 13:663–729

    PubMed  CAS  Google Scholar 

  • Arch JR, Ainsworth AT, Cawthorne MA (1982) Thermogenic and anorectic effects of ephedrine and congeners in mice and rats. Life Sci 30:1817–1826

    PubMed  CAS  Google Scholar 

  • Arch JRS, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, Thody VE, Wilson C, Wilson S (1984a) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–165

    PubMed  CAS  Google Scholar 

  • Arch JRS, Ainsworth AT, Ellis RDM, Piercy V, Thody VE, Thurlby PL, Wilson C, Wilson S, Young P (1984b) Treatment of obesity with thermogenic β-adrenoceptor agonists: studies on BRL 26830A in rodents. Int J Obes 8(Suppl 1):1–11

    PubMed  CAS  Google Scholar 

  • Arch JRS, Piercy V, Thurlby PL, Wilson C, Wilson S (1987) Thermogenic and lipolytic drugs for the treatment of obesity: old ideas and new possibilities. In: Berry EM, Blondheim SH, Eliahou HE, Shafrir E (eds) Recent advances in obesity research. John Libbey, London, pp 300–311

    Google Scholar 

  • Arch JRS, Bywater RJ, Coney KA, Ellis RDM, Thurlby PL, Smith SA, Zed C (1989) Influences on body composition and mechanism of action of the β-adrenoceptor agonist BRL 26830A. In: Lardy HA, Stratman F (eds) Proceedings of the Eighteenth Steenbeck Symposium, “Hormones, thermogenesis and obesity”. Elsevier, New York, pp 465–476

    Google Scholar 

  • Arch JRS, Cawthorne MA, Coney KA, Gusterson BA, Piercy V, Sennitt MV, Smith SA, Wallace J, Wilson S (1991) β-adrenoceptor-mediated control of thermogenesis, body composition and glucose homeostasis. In: Rothwell NJ, Stock MJ (eds) Obesity and Cachexia. Wiley, Chichester, pp 241–268

    Google Scholar 

  • Arch JR, Hislop D, Wang SJY, Speakman JR (2006) Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int J Obes 30:1322–1331

    CAS  Google Scholar 

  • Asensio CD, Arsenijevic D, Lehr D, Giacobino J-P, Muzzin P, Rohner-Jeanrenaud F (2008) Effects of leptin on energy metabolism in β-less mice. Int J Obes (in press)

  • Astrup A, Buemann B, Christensen NJ, Toubro S (1994) Failure to increase lipid oxidation in response to increasing dietary fat content in formerly obese women. Am J Physiol 266:E592–599

    PubMed  CAS  Google Scholar 

  • Baker JG (2005a) Evidence for a secondary state of the human β3-adrenoceptor. Mol Pharmacol 68:1645–1655

    PubMed  CAS  Google Scholar 

  • Baker JG (2005b) Site of action of β-ligands at the human β1-adrenoceptor. J Pharmacol Exp Ther 313:1163–1171

    PubMed  CAS  Google Scholar 

  • Baker JG, Hill SJ (2007) Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates. Trends Pharmacol Sci 28:374–381

    PubMed  CAS  Google Scholar 

  • Baker JG, Hall IP, Hill SJ (2003a) Agonist actions of “β-blockers” provide evidence for two agonist activation sites or conformations of the human β1-adrenoceptor. Mol Pharmacol 63:1312–1321

    PubMed  CAS  Google Scholar 

  • Baker JG, Hall IP, Hill SJ (2003b) Agonist and inverse agonist actions of β-blockers at the human β2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol 64:1357–1369

    PubMed  CAS  Google Scholar 

  • Baker JG, Hall IP, Hill SJ (2003c) Influence of agonist efficacy and receptor phosphorylation on antagonist affinity measurements: differences between second messenger and reporter gene responses. Mol Pharmacol 64:679–688

    PubMed  CAS  Google Scholar 

  • Barbe P, Millet L, Galitzky J, Lafontan M, Berlan M (1996) In situ assessment of the role of the β1-, β2- and β3-adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue. Br J Pharmacol 117:907–913

    PubMed  CAS  Google Scholar 

  • Bardou M, Rouget C, Breuiller-Fouche M, Loustalot C, Naline E, Sagot P, Frydman R, Morcillo EJ, Advenier C, Leroy MJ, Morrison JJ (2007) Is the beta3-adrenoceptor (ADRB3) a potential target for uterorelaxant drugs? BMC Pregnancy Childbirth 7(Suppl 1):S14

    PubMed  Google Scholar 

  • Bebernitz GR, Schuster HF (2002) The impact of fatty acid oxidation on energy utilization: targets and therapy. Curr Pharm Des 8:1199–1227

    PubMed  CAS  Google Scholar 

  • Biftu T, Feng DD, Liang GB, Kuo H, Qian X, Naylor EM, Colandrea VJ, Candelore MR, Cascieri MA, Colwell LF Jr., Forrest MJ, Hom GJ, MacIntyre DE, Stearns RA, Strader CD, Wyvratt MJ, Fisher MH, Weber AE (2000) Synthesis and SAR of benzyl and phenoxymethylene oxadiazole benzenesulfonamides as selective β3 adrenergic receptor agonist antiobesity agents. Bioorg Med Chem Lett 10:1431–1434

    PubMed  CAS  Google Scholar 

  • Bitz C, Toubro S, Larsen TM, Harder H, Rennie KL, Jebb SA, Astrup A (2004) Increased 24-h energy expenditure in type 2 diabetes. Diabetes Care 27:2416–2421

    PubMed  Google Scholar 

  • Blaak EE, Wolffenbuttel BH, Saris WH, Pelsers MM, Wagenmakers AJ (2001) Weight reduction and the impaired plasma-derived free fatty acid oxidation in type 2 diabetic subjects. J Clin Endocrinol Metab 86:1638–1644

    PubMed  CAS  Google Scholar 

  • Breslow MJ, Min-Lee K, Brown DR, Chacko VP, Palmer D, Berkowitz DE (1999) Effect of leptin deficiency on metabolic rate in ob/ob mice. Am J Physiol 276:E443–449

    PubMed  CAS  Google Scholar 

  • Buemann B, Sorensen TI, Pedersen O, Black E, Holst C, Toubro S, Echwald S, Holst JJ, Rasmussen C, Astrup A (2005) Lower-body fat mass as an independent marker of insulin sensitivity—the role of adiponectin. Int J Obes (Lond) 29:624–631

    CAS  Google Scholar 

  • Cavuoto P, McAinch AJ, Hatzinikolas G, Cameron-Smith D, Wittert GA (2007) Effects of cannabinoid receptors on skeletal muscle oxidative pathways. Mol Cell Endocrinol 267:63–69

    PubMed  CAS  Google Scholar 

  • Chaston TB, Dixon JB, O’Brien PE (2007) Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes (Lond) 31:743–750

    CAS  Google Scholar 

  • Chen HC, Farese RV Jr (2005) Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler Thromb Vasc Biol 25:482–486

    PubMed  CAS  Google Scholar 

  • Chen Y, Heiman ML (2000) Chronic leptin administration promotes lipid utilization until fat mass is greatly reduced and preserves lean mass of normal female rats. Regul Pept 92:113–119

    PubMed  CAS  Google Scholar 

  • Choi CS, Savage DB, Abu-Elheiga L, Liu ZX, Kim S, Kulkarni A, Distefano A, Hwang YJ, Reznick RM, Codella R, Zhang D, Cline GW, Wakil SJ, Shulman GI (2007a) Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc Natl Acad Sci U S A 104:16480–16485

    PubMed  CAS  Google Scholar 

  • Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, Kim S, Distefano A, Samuel VT, Neschen S, Zhang D, Wang A, Zhang XM, Kahn M, Cline GW, Pandey SK, Geisler JG, Bhanot S, Monia BP, Shulman GI (2007b) Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 282:22678–22688

    PubMed  CAS  Google Scholar 

  • Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370:1706–1713

    PubMed  CAS  Google Scholar 

  • Clapham JC, Arch JR (2007) Thermogenic and metabolic antiobesity drugs: rationale and opportunities. Diabetes Obes Metab 9:259–275

    PubMed  CAS  Google Scholar 

  • Cohen ML, Bloomquist W, Ito M, Lowell BB (2000) β3 receptors mediate relaxation in stomach fundus whereas a fourth β receptor mediates tachycardia in atria from transgenic β3 receptor knockout mice. Recept Channels 7:17–23

    PubMed  CAS  Google Scholar 

  • Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS (1996) Role of leptin in fat regulation. Nature 380:677

    PubMed  CAS  Google Scholar 

  • Connacher AA, Jung RT, Mitchell PE (1988) Weight loss in obese subjects on a restricted diet given BRL 26830A, a new atypical β-adrenoceptor agonist. Br Med J (Clin Res Ed) 296:1217–1220

    Article  CAS  Google Scholar 

  • Connacher AA, Bennet WM, Jung RT, Rennie MJ (1992) Metabolic effects of three weeks administration of the β-adrenoceptor agonist BRL 26830A. Int J Obes Relat Metab Disord 16:685–694

    PubMed  CAS  Google Scholar 

  • Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3:403–416

    PubMed  CAS  Google Scholar 

  • Curioni C, Andre C (2006) Rimonabant for overweight or obesity. Cochrane Database Syst Rev:CD006162

  • da Silva AA, Tallam LS, Liu J, Hall JE (2006) Chronic antidiabetic and cardiovascular actions of leptin: role of CNS and increased adrenergic activity. Am J Physiol Regul Integr Comp Physiol 291:R1275–1282

    PubMed  Google Scholar 

  • Darimont C, Turini M, Epitaux M, Zbinden I, Richelle M, Montell E, Ferrer-Martinez A, Mace K (2004) β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet. Nutr Metab (Lond) 1:4

    Google Scholar 

  • de Vente J, Bast A, Van Bree L, Zaagsma J (1980) β-Adrenoceptor studies. 6. Further investigations on the hybrid nature of the rat adipocyte β-adrenoceptor. Eur J Pharmacol 63:73–83

    PubMed  Google Scholar 

  • Deng C, Paoloni-Giacobino A, Kuehne F, Boss O, Revelli J-P, Moinat M, Cawthorne MA, Muzzin P, Giacobino JP (1997) Respective degree of expression of β1-, β2- and β3-adrenoceptors in human brown and white adipose tissues. Br J Pharmacol 118:929–934

    Google Scholar 

  • Després JP, Golay A, Sjostrom L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134

    PubMed  Google Scholar 

  • Dobbins RL, Szczepaniak LS, Zhang W, McGarry JD (2003) Chemical sympathectomy alters regulation of body weight during prolonged ICV leptin infusion. Am J Physiol Endocrinol Metab 284:E778–E787

    PubMed  CAS  Google Scholar 

  • Dow RL (1997) β3-adrenergic agonists: potential therapeutics for obesity. Expert Opin Investig Drugs 6:1811–1825

    PubMed  CAS  Google Scholar 

  • Dulloo AG, Miller DS (1984) Thermogenic drugs for the treatment of obesity: sympathetic stimulants in animal models. Br J Nutr 52:179–196

    PubMed  CAS  Google Scholar 

  • Dulloo AG, Miller DS (1987) Screening of drugs for thermogenic anti-obesity properties: antidepressants. Ann Nutr Metab 31:69–80

    PubMed  CAS  Google Scholar 

  • Dunbar JC, Hu Y, Lu H (1997) Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes 46:2040–2043

    PubMed  CAS  Google Scholar 

  • Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human β3-adrenergic receptor. Science 245:1118–1121

    PubMed  CAS  Google Scholar 

  • Faria AN, Ribeiro Filho FF, Kohlmann NE, Gouvea Ferreira SR, Zanella MT (2005) Effects of sibutramine on abdominal fat mass, insulin resistance and blood pressure in obese hypertensive patients. Diabetes Obes Metab 7:246–253

    PubMed  CAS  Google Scholar 

  • Farooqi IS, O’Rahilly S (2004) Monogenic human obesity syndromes. Recent Prog Horm Res 59:409–424

    PubMed  CAS  Google Scholar 

  • Feng DD, Biftu T, Candelore MR, Cascieri MA, Colwell LF Jr, Deng L, Feeney WP, Forrest MJ, Hom GJ, MacIntyre DE, Miller RR, Stearns RA, Strader CD, Tota L, Wyvratt MJ, Fisher MH, Weber AE (2000) Discovery of an orally bioavailable alkyl oxadiazole β3 adrenergic receptor agonist. Bioorg Med Chem Lett 10:1427–1429

    PubMed  CAS  Google Scholar 

  • Flatt JP (2007) Exaggerated claim about adaptive thermogenesis. Int J Obes (Lond) 31:1626 author reply 1627–1628

    CAS  Google Scholar 

  • Fujimoto WY, Jablonski KA, Bray GA, Kriska A, Barrett-Connor E, Haffner S, Hanson R, Hill JO, Hubbard V, Stamm E, Pi-Sunyer FX (2007) Body size and shape changes and the risk of diabetes in the diabetes prevention program. Diabetes 56:1680–1685

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1972) The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. In: Blaschko H, Muecholl E (eds) Catecholamines. Springer, New York, pp 283–335

    Google Scholar 

  • Furuta A, Thomas CA, Higaki M, Chancellor MB, Yoshimura N, Yamaguchi O (2006) The promise of β3-adrenoceptor agonists to treat the overactive bladder. Urol Clin North Am 33:539–543

    PubMed  Google Scholar 

  • Galandrin S, Bouvier M (2006) Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584

    PubMed  CAS  Google Scholar 

  • Galitzky J, Langin D, Verwaerde P, Montastruc JL, Lafontan M, Berlan M (1997) Lipolytic effects of conventional β3-adrenoceptor agonists and of CGP 12,177 in rat and human fat cells: preliminary pharmacological evidence for a putative β4-adrenoceptor. Br J Pharmacol 122:1244–1250

    PubMed  CAS  Google Scholar 

  • Garrow JS, Webster J (1985) Are pre-obese people energy thrifty? Lancet 1:670–671

    PubMed  CAS  Google Scholar 

  • Gavrilova O, Marcus-Samuels B, Reitman ML (2000) Lack of responses to a β3-adrenergic agonist in lipoatrophic A-ZIP/F-1 mice. Diabetes 49:1910–1916

    PubMed  CAS  Google Scholar 

  • Gerhardt CC, Gros J, Strosberg AD, Issad T (1999) Stimulation of the extracellular signal-regulated kinase 1/2 pathway by human β-3 adrenergic receptor: new pharmacological profile and mechanism of activation. Mol Pharmacol 55:255–262

    PubMed  CAS  Google Scholar 

  • Granneman JG, Lahners KN, Chaudhry A (1991) Molecular cloning and expression of the rat β3-adrenergic receptor. Mol Pharmacol 40:895–899

    PubMed  CAS  Google Scholar 

  • Grasso P, Rozhavskaya-Arena M, Leinung MC, Lee DW (2001) [D-LEU-4]-OB3, a synthetic leptin agonist, improves hyperglycemic control in C57BL/6J ob/ob mice. Regul Pept 101:123–129

    PubMed  CAS  Google Scholar 

  • Gros J, Manning BS, Pietri-Rouxel F, Guillaume JL, Drumare MF, Strosberg AD (1998) Site-directed mutagenesis of the human β3-adrenoceptor–transmembrane residues involved in ligand binding and signal transduction. Eur J Biochem 251:590–596

    PubMed  CAS  Google Scholar 

  • Grujic D, Susulic VS, Harper ME, Himms-Hagen J, Cunningham BA, Corkey BE, Lowell BB (1997) β3-adrenergic receptors on white and brown adipocytes mediate β3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 272:17686–17693

    PubMed  CAS  Google Scholar 

  • Halaas JL, Boozer C, Blair West J, Fidahusein N, Denton DA, Friedman JM (1997) Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A 94:8878–8883

    PubMed  CAS  Google Scholar 

  • Harms HH (1976) Stereochemical aspects of β-adrenoceptor antagonist-receptor interaction in adipocytes. Differentiation of β-adrenoceptors in human and rat adipocytes. Life Sci 19:1447–1452

    PubMed  CAS  Google Scholar 

  • Harms HH, Zaagsma J, Van der Wal B (1974) β-adrenoceptor studies. III. On the β-adrenoceptors in rat adipose tissue. Eur J Pharmacol 25:87–91

    PubMed  CAS  Google Scholar 

  • Harms HH, Zaagsma J, de Vente J (1977) Differentiation of β-adrenoceptors in right atrium, diaphragm and adipose tissue of the rat, using stereoisomers of propranolol, alprenolol, nifenalol and practolol. Life Sci 21:123–128

    PubMed  CAS  Google Scholar 

  • Harrington WW, Britt CS, Wilson JG, Milliken NO, Binz JG, Lobe DC, Oliver WR, Lewis MC, Ignar DM (2007) The effect of PPARα, PPARδ, PPARγ, and PPARpan agonists on body weight, body mass, and serum lipid profiles in diet-induced obese AKR/J mice. PPAR Res 2007:97125

    PubMed  Google Scholar 

  • Harwood HJ Jr, Petras SF, Shelly LD, Zaccaro LM, Perry DA, Makowski MR, Hargrove DM, Martin KA, Tracey WR, Chapman JG, Magee WP, Dalvie DK, Soliman VF, Martin WH, Mularski CJ, Eisenbeis SA (2003) Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J Biol Chem 278:37099–37111

    PubMed  CAS  Google Scholar 

  • Hausberg M, Morgan DA, Mitchell JL, Sivitz WI, Mark AL, Haynes WG (2002) Leptin potentiates thermogenic sympathetic responses to hypothermia: a receptor-mediated effect. Diabetes 51:2434–2440

    PubMed  CAS  Google Scholar 

  • Hermanowski-Vosatka A, Balkovec JM, Cheng K, Chen HY, Hernandez M, Koo GC, Le Grand CB, Li Z, Metzger JM, Mundt SS, Noonan H, Nunes CN, Olson SH, Pikounis B, Ren N, Robertson N, Schaeffer JM, Shah K, Springer MS, Strack AM, Strowski M, Wu K, Wu T, Xiao J, Zhang BB, Wright SD, Thieringer R (2005) 11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 202:517–527

    PubMed  CAS  Google Scholar 

  • Heubach JF, Ravens U, Kaumann AJ (2004) Epinephrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human β2-adrenoceptors overexpressed in mouse heart. Mol Pharmacol 65:1313–1322

    PubMed  CAS  Google Scholar 

  • Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, McCamish M (1999) Recombinant leptin for weight loss in obese and lean adults, A randomized, controlled, dose-escalation trial. JAMA 282:1568–1575

    PubMed  CAS  Google Scholar 

  • Hidaka S, Yoshimatsu H, Kondou S, Tsuruta Y, Oka K, Noguchi H, Okamoto K, Sakino H, Teshima Y, Okeda T, Sakata T (2002) Chronic central leptin infusion restores hyperglycemia independent of food intake and insulin level in streptozotocin-induced diabetic rats. FASEB J 16:509–518

    PubMed  CAS  Google Scholar 

  • Hirsch J, Mackintosh RM, Aronne LJ (2000) The effects of drugs used to treat obesity on the autonomic nervous system. Obes Res 8:227–233

    PubMed  CAS  Google Scholar 

  • Hoeks J, van Baak MA, Hesselink MK, Hul GB, Vidal H, Saris WH, Schrauwen P (2003) Effect of β1- and β2-adrenergic stimulation on energy expenditure, substrate oxidation, and UCP3 expression in humans. Am J Physiol Endocrinol Metab 285:E775–782

    PubMed  CAS  Google Scholar 

  • Holloway BR (1989) Reactivation of brown adipose tissue. Proc Nutr Soc 48:225–230

    PubMed  CAS  Google Scholar 

  • Hutchinson DS, Sato M, Evans BA, Christopoulos A, Summers RJ (2005) Evidence for pleiotropic signaling at the mouse β3-adrenoceptor revealed by SR59230A [3-(2-Ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propa nol oxalate]. J Pharmacol Exp Ther 312:1064–1074

    PubMed  CAS  Google Scholar 

  • Hutchinson DS, Chernogubova E, Sato M, Summers RJ, Bengtsson T (2006) Agonist effects of zinterol at the mouse and human β(3)-adrenoceptor. Naunyn Schmiedebergs Arch Pharmacol 373:158–168

    PubMed  CAS  Google Scholar 

  • Hwa JJ, Ghibaudi L, Compton D, Fawzi AB, Strader CD (1996) Intracerebroventricular injection of leptin increases thermogenesis and mobilizes fat metabolism in ob/ob mice. Horm Metab Res 28:659–663

    PubMed  CAS  Google Scholar 

  • Hwa JJ, Fawzi AB, Graziano MP, Ghibaudi L, Williams P, Van Heek M, Davis H, Rudinski M, Sybertz E, Strader CD (1997) Leptin increases energy expenditure and selectively promotes fat metabolism in ob/ob mice. Am J Physiol 272:R1204–R1209

    PubMed  CAS  Google Scholar 

  • Ida K, Hashimoto K, Kamiya M, Muto S, Nakamura Y, Kato K, Mizota M (1996) Stereoselective action of (R*,R*)-(+/−)-methyl-4-[2-[2-hydroxy-2-(3-chlorophenyl)ethylamino] propyl]-phenoxyacetic acid (BRL37344) on β-adrenoceptors and metabolic chiral inversion. Biochem Pharmacol 52:1521–1527

    PubMed  CAS  Google Scholar 

  • James WP, Astrup A, Finer N, Hilsted J, Kopelman P, Rossner S, Saris WH, Van Gaal LF (2000) Effect of sibutramine on weight maintenance after weight loss: a randomised trial. STORM Study Group. Sibutramine Trial of Obesity Reduction and Maintenance. Lancet 356:2119–2125

    PubMed  CAS  Google Scholar 

  • Jensen MD (2006) Is visceral fat involved in the pathogenesis of the metabolic syndrome? Human model. Obesity (Silver Spring) 14(Suppl 1):20S–24S

    CAS  Google Scholar 

  • Jeon JY, Steadward RD, Wheeler GD, Bell G, McCargar L, Harber V (2003) Intact sympathetic nervous system is required for leptin effects on resting metabolic rate in people with spinal cord injury. J Clin Endocrinol Metab 88:402–407

    PubMed  CAS  Google Scholar 

  • Joseph SS, Colledge WH, Kaumann AJ (2004a) Aspartate138 is required for the high-affinity ligand binding site but not for the low-affinity binding site of the β1-adrenoceptor. Naunyn Schmiedebergs Arch Pharmacol 370:223–226

    PubMed  CAS  Google Scholar 

  • Joseph SS, Lynham JA, Colledge WH, Kaumann AJ (2004b) Binding of (−)-[3H]-CGP12177 at two sites in recombinant human β1-adrenoceptors and interaction with β-blockers. Naunyn Schmiedebergs Arch Pharmacol 369:525–532

    PubMed  CAS  Google Scholar 

  • Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451

    PubMed  CAS  Google Scholar 

  • Kaumann AJ (1989) Is there a third heart β-adrenoceptor? Trends Pharmacol Sci 10:316–320

    PubMed  CAS  Google Scholar 

  • Kaumann AJ (1997) Four β-adrenoceptor subtypes in the mammalian heart. Trends Pharmacol Sci 18:70–76

    PubMed  CAS  Google Scholar 

  • Kaumann AJ, Molenaar P (1996) Differences between the third cardiac β-adrenoceptor and the colonic β3-adrenoceptor in the rat. Br J Pharmacol 118:2085–2098

    PubMed  CAS  Google Scholar 

  • Kaumann AJ, Preitner F, Sarsero D, Molenaar P, Revelli JP, Giacobino JP (1998) (−)-CGP 12177 causes cardiostimulation and binds to cardiac putative β4-adrenoceptors in both wild-type and β3-adrenoceptor knockout mice. Mol Pharmacol 53:670–675

    PubMed  CAS  Google Scholar 

  • Kaumann AJ, Engelhardt S, Hein L, Molenaar P, Lohse M (2001) Abolition of (−)-CGP 12177-evoked cardiostimulation in double β12-adrenoceptor knockout mice. Obligatory role of β1-adrenoceptors for putative β4-adrenoceptor pharmacology. Naunyn Schmiedebergs Arch Pharmacol 363:87–93

    PubMed  CAS  Google Scholar 

  • Kaumann A, Semmler AB, Molenaar P (2007) The effects of both noradrenaline and CGP12177, mediated through human β1-adrenoceptors, are reduced by PDE3 in human atrium but PDE4 in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 375:123–131

    PubMed  CAS  Google Scholar 

  • Kawashita NH, Moura MA, Brito MN, Brito SM, Garofalo MA, Kettelhut IC, Migliorini RH (2002) Relative importance of sympathetic outflow and insulin in the reactivation of brown adipose tissue lipogenesis in rats adapted to a high-protein diet. Metabolism 51:343–349

    PubMed  CAS  Google Scholar 

  • Kelley DE, Kuller LH, McKolanis TM, Harper P, Mancino J, Kalhan S (2004) Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes. Diabetes Care 27:33–40

    PubMed  CAS  Google Scholar 

  • Kim-Motoyama H, Yasuda K, Yamaguchi T, Yamada N, Katakura T, Shuldiner AR, Akanuma Y, Ohashi Y, Yazaki Y, Kadowaki T (1997) A mutation of the β3-adrenergic receptor is associated with visceral obesity but decreased serum triglyceride. Diabetologia 40:469–472

    PubMed  CAS  Google Scholar 

  • Konkar AA, Zhai Y, Granneman JG (2000) β1-adrenergic receptors mediate β3-adrenergic-independent effects of CGP 12177 in brown adipose tissue. Mol Pharmacol 57:252–258

    PubMed  CAS  Google Scholar 

  • Kurokawa N, Nakai K, Kameo S, Liu ZM, Satoh H (2001) Association of BMI with the β3-adrenergic receptor gene polymorphism in Japanese: meta-analysis. Obes Res 9:741–745

    PubMed  CAS  Google Scholar 

  • Lafontan M, Piazza PV, Girard J (2007) Effects of CB1 antagonist on the control of metabolic functions in obese type 2 diabetic patients. Diabetes Metab 33:85–95

    PubMed  CAS  Google Scholar 

  • Larsen TM, Toubro S, van Baak MA, Gottesdiener KM, Larson P, Saris WH, Astrup A (2002) Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr 76:780–788

    PubMed  CAS  Google Scholar 

  • Larson DE, Ferraro RT, Robertson DS, Ravussin E (1995) Energy metabolism in weight-stable postobese individuals. Am J Clin Nutr 62:735–739

    PubMed  CAS  Google Scholar 

  • Leineweber K, Buscher R, Bruck H, Brodde OE (2004) β-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369:1–22

    PubMed  CAS  Google Scholar 

  • Levin N, Nelson C, Gurney A, Vandlen R, de Sauvage F (1996) Decreased food intake does not completely account for adiposity reduction after ob protein infusion. Proc Natl Acad Sci U S A 93:1726–1730

    PubMed  CAS  Google Scholar 

  • Li Z, Maglione M, Tu W, Mojica W, Arterburn D, Shugarman LR, Hilton L, Suttorp M, Solomon V, Shekelle PG, Morton SC (2005) Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med 142:532–546

    PubMed  CAS  Google Scholar 

  • Lin CY, Higginbotham DA, Judd RL, White BD (2002) Central leptin increases insulin sensitivity in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 282:E1084–1091

    PubMed  CAS  Google Scholar 

  • Livingston EH (2006) Lower body subcutaneous fat accumulation and diabetes mellitus risk. Surg Obes Relat Dis 2:362–368

    PubMed  Google Scholar 

  • Malinowska B, Schlicker E (1996) Mediation of the positive chronotropic effect of CGP 12177 and cyanopindolol in the pithed rat by atypical β-adrenoceptors, different from β3-adrenoceptors. Br J Pharmacol 117:943–949

    PubMed  CAS  Google Scholar 

  • Malinowska B, Schlicker E (1997) Further evidence for differences between cardiac atypical β-adrenoceptors and brown adipose tissue β3-adrenoceptors in the pithed rat. Br J Pharmacol 122:1307–1314

    PubMed  CAS  Google Scholar 

  • Manara L, Croci T, Landi M (1995) β3-adrenoceptors and intestinal motility. Fundam Clin Pharmacol 9:332–342

    PubMed  CAS  Google Scholar 

  • Massoudi M, Miller DS (1977) Ephedrine, a thermogenic and potential slimming drug. Proc Nutr Soc 36:135A

    PubMed  CAS  Google Scholar 

  • Massoudi M, Evans E, Miller DS (1983) Thermogenic drugs for the treatment of obesity: screening using obese rats and mice. Ann Nutr Metab 27:26–37

    PubMed  CAS  Google Scholar 

  • Matsuda D, Tomoda H (2007) DGAT inhibitors for obesity. Curr Opin Investig Drugs 8:836–841

    PubMed  CAS  Google Scholar 

  • Michel MC, Vrydag W (2006) Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol 147(Suppl 2):S88–S119

    PubMed  CAS  Google Scholar 

  • Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    PubMed  CAS  Google Scholar 

  • Mirshamsi S, Olsson M, Arnelo U, Kinsella JM, Permert J, Ashford ML (2007) BVT.3531 reduces body weight and activates K(ATP) channels in isolated arcuate neurons in rats. Regul Pept 141:19–24

    PubMed  CAS  Google Scholar 

  • Mistry AM, Swick AG, Romsos DR (1997) Leptin rapidly lowers food intake and elevates metabolic rates in lean and ob/ob mice. J Nutr 127:2065–2072

    PubMed  CAS  Google Scholar 

  • Mitchell TH, Ellis RD, Smith SA, Robb G, Cawthorne MA (1989) Effects of BRL 35135, a β-adrenoceptor agonist with novel selectivity, on glucose tolerance and insulin sensitivity in obese subjects. Int J Obes 13:757–766

    PubMed  CAS  Google Scholar 

  • Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2):S9–S15

    PubMed  CAS  Google Scholar 

  • Morton NM, Paterson JM, Masuzaki H, Holmes MC, Staels B, Fievet C, Walker BR, Flier JS, Mullins JJ, Seckl JR (2004) Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 β-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 53:931–938

    PubMed  CAS  Google Scholar 

  • Muzzin P, Revelli JP, Kuhne F, Gocayne JD, McCombie WR, Venter JC, Giacobino JP, Fraser CM (1991) An adipose tissue-specific β-adrenergic receptor. Molecular cloning and down-regulation in obesity. J Biol Chem 266:24053–24058

    PubMed  CAS  Google Scholar 

  • Muzzin P, Boss O, Mathis N, Revelli JP, Giacobino JP, Willcocks K, Badman GT, Cantello BC, Hindley RM, Cawthorne MA (1994) Characterization of a new, highly specific, β3-adrenergic receptor radioligand, [3H]SB 206606. Mol Pharmacol 46:357–363

    PubMed  CAS  Google Scholar 

  • Nahmias C, Blin N, Elalouf J-M, Mattei MG, Strosberg AD, Emorine LJ (1991) Molecular characterization of the mouse β3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J 10:3721–3727

    PubMed  CAS  Google Scholar 

  • Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452

    PubMed  CAS  Google Scholar 

  • Nelson KM, Weinsier RL, Long CL, Schutz Y (1992) Prediction of resting energy expenditure from fat-free mass and fat mass. Am J Clin Nutr 56:848–856

    PubMed  CAS  Google Scholar 

  • Niclauss N, Michel-Reher MB, Alewijnse AE, Michel MC (2006) Comparison of three radioligands for the labelling of human β-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol 374:99–105

    PubMed  CAS  Google Scholar 

  • Oh W, Abu-Elheiga L, Kordari P, Gu Z, Shaikenov T, Chirala SS, Wakil SJ (2005) Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proc Natl Acad Sci U S A 102:1384–1389

    PubMed  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight in ob/ob mice. Science 269:540–543

    PubMed  CAS  Google Scholar 

  • Rafael J, Herling AW (2000) Leptin effect in ob/ob mice under thermoneutral conditions depends not necessarily on central satiation. Am J Physiol Regul Integr Comp Physiol 278:R790–795

    PubMed  CAS  Google Scholar 

  • Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C (1986) Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest 78:1568–1578

    PubMed  CAS  Google Scholar 

  • Redman LM, Heilbronn LK, Martin CK, Alfonso A, Smith SR, Ravussin E (2007) Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab 92:865–872

    PubMed  CAS  Google Scholar 

  • Ritchie SA, Connell JM (2007) The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 17:319–326

    PubMed  CAS  Google Scholar 

  • Rouru J, Cusin I, Zakrzewska KE, Jeanrenaud B, Rohner-Jeanrenaud F (1999) Effects of intravenously infused leptin on insulin sensitivity and on the expression of uncoupling proteins in brown adipose tissue. Endocrinology 140:3688–3692

    PubMed  CAS  Google Scholar 

  • Rucker D, Padwal R, Li SK, Curioni C, Lau DC (2007) Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ 335:1194–1199

    PubMed  CAS  Google Scholar 

  • Ruige JB, Mertens I, Considine RV, Paelinck BP, Van Gaal LF (2006) Opposite effects of insulin-like molecules and leptin in coronary heart disease of type 2 diabetes Preliminary data. Int J Cardiol 111:19–25

    PubMed  Google Scholar 

  • Sato M, Horinouchi T, Hutchinson DS, Evans BA, Summers RJ (2007) Ligand-directed signaling at the β3-adrenoceptor produced by 3-(2-Ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propan ol oxalate (SR59230A) relative to receptor agonists. Mol Pharmacol 72:1359–1368

    PubMed  CAS  Google Scholar 

  • Scheidegger K, O’Connell M, Robbins DC, Danforth E Jr (1984) Effects of chronic β-receptor stimulation on sympathetic nervous system activity, energy expenditure, and thyroid hormones. J Clin Endocrinol Metab 58:895–903

    PubMed  CAS  Google Scholar 

  • Schiffelers SL, Brouwer EM, Saris WH, van Baak MA (1998) Inhibition of lipolysis reduces β1-adrenoceptor-mediated thermogenesis in man. Metabolism 47:1462–1467

    PubMed  CAS  Google Scholar 

  • Schiffelers SL, van Harmelen VJ, de Grauw HA, Saris WH, van Baak MA (1999) Dobutamine as selective β1-adrenoceptor agonist in in vivo studies on human thermogenesis and lipid utilization. J Appl Physiol 87:977–981

    PubMed  CAS  Google Scholar 

  • Schiffelers SL, Blaak EE, Saris WH, van Baak MA (2000) In vivo β3-adrenergic stimulation of human thermogenesis and lipid use. Clin Pharmacol Ther 67:558–566

    PubMed  CAS  Google Scholar 

  • Schiffelers SL, Saris WH, Boomsma F, van Baak MA (2001a) β1- and β2-Adrenoceptor-mediated thermogenesis and lipid utilization in obese and lean men. J Clin Endocrinol Metab 86:2191–2199

    PubMed  CAS  Google Scholar 

  • Schiffelers SL, Saris WH, van Baak MA (2001b) The effect of an increased free fatty acid concentration on thermogenesis and substrate oxidation in obese and lean men. Int J Obes Relat Metab Disord 25:33–38

    PubMed  CAS  Google Scholar 

  • Schmidt MI, Duncan BB, Vigo A, Pankow JS, Couper D, Ballantyne CM, Hoogeveen RC, Heiss G (2006) Leptin and incident type 2 diabetes: risk or protection? Diabetologia 49:2086–2096

    PubMed  CAS  Google Scholar 

  • Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–24210

    PubMed  CAS  Google Scholar 

  • Seifert R, Gether U, Wenzel-Seifert K, Kobilka BK (1999) Effects of guanine, inosine, and xanthine nucleotides on β(2)-adrenergic receptor/G(s) interactions: evidence for multiple receptor conformations. Mol Pharmacol 56:348–358

    PubMed  CAS  Google Scholar 

  • Sennitt MV, Kaumann AJ, Molenaar P, Beeley LJ, Young PW, Kelly J, Chapman H, Henson SM, Berge JM, Dean DK, Kotecha NR, Morgan HK, Rami HK, Ward RW, Thompson M, Wilson S, Smith SA, Cawthorne MA, Stock MJ, Arch JR (1998) The contribution of classical (β1/2-) and atypical β-adrenoceptors to the stimulation of human white adipocyte lipolysis and right atrial appendage contraction by novel β3-adrenoceptor agonists of differing selectivities. J Pharmacol Exp Ther 285:1084–1095

    PubMed  CAS  Google Scholar 

  • Shi ZQ, Nelson A, Whitcomb L, Wang J, Cohen AM (1998) Intracerebroventricular administration of leptin markedly enhances insulin sensitivity and systemic glucose utilization in conscious rats. Metabolism 47:1274–1280

    PubMed  CAS  Google Scholar 

  • Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL (1999) Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401:73–76

    PubMed  CAS  Google Scholar 

  • Sivitz WI, Walsh SA, Morgan DA, Thomas MJ, Haynes WG (1997) Effects of leptin on insulin sensitivity in normal rats. Endocrinology 138:3395–3401

    PubMed  CAS  Google Scholar 

  • Smith SA, Sennitt MV, Cawthorne MA (1990) BRL 35135: an orally active antihyperglycaemic agent with weight reducing effects. In: Bailey CJ, Flatt PR (eds) New antidiabetic drugs. Smith-Gordon, London, pp 177–189

    Google Scholar 

  • Solinas G, Summermatter S, Mainieri D, Gubler M, Pirola L, Wymann MP, Rusconi S, Montani JP, Seydoux J, Dulloo AG (2004) The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation. FEBS Lett 577:539–544

    PubMed  CAS  Google Scholar 

  • Steinberg GR, Bonen A, Dyck DJ (2002) Fatty acid oxidation and triacylglycerol hydrolysis are enhanced after chronic leptin treatment in rats. Am J Physiol Endocrinol Metab 282:E593–E600

    PubMed  CAS  Google Scholar 

  • Stemmelin J, Cohen C, Terranova JP, Lopez-Grancha M, Pichat P, Bergis O, Decobert M, Santucci V, Francon D, Alonso R, Stahl SM, Keane P, Avenet P, Scatton B, le Fur G, Griebel G (2008) Stimulation of the β(3)-adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacology 33:574–587

    PubMed  CAS  Google Scholar 

  • Stiegler P, Cunliffe A (2006) The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med 36:239–262

    PubMed  Google Scholar 

  • Surmely JF, Voirol MJ, Stefanoni N, Assimacopoulos-Jeannet F, Giacobino JP, Jequier E, Gaillard RC, Tappy L (1998) Stimulation by leptin of 3H GDP binding to brown adipose tissue of fasted but not fed rats. Int J Obes Relat Metab Disord 22:923–926

    PubMed  CAS  Google Scholar 

  • Takasu T, Ukai M, Sato S, Matsui T, Nagase I, Maruyama T, Sasamata M, Miyata K, Uchida H, Yamaguchi O (2007) Effect of (R)-2-(2-aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective β3-adrenoceptor agonist, on bladder function. J Pharmacol Exp Ther 321:642–647

    PubMed  CAS  Google Scholar 

  • Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisawa M, Kodama T, Sakai J (2003) Activation of peroxisome proliferator-activated receptor delta induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A 100:15924–15929

    PubMed  CAS  Google Scholar 

  • Tchernof A, Starling RD, Turner A, Shuldiner AR, Walston JD, Silver K, Poehlman ET (2000) Impaired capacity to lose visceral adipose tissue during weight reduction in obese postmenopausal women with the Trp64Arg β3-adrenoceptor gene variant. Diabetes 49:1709–1713

    PubMed  CAS  Google Scholar 

  • Thomas EL, Brynes AE, McCarthy J, Goldstone AP, Hajnal JV, Saeed N, Frost G, Bell JD (2000) Preferential loss of visceral fat following aerobic exercise, measured by magnetic resonance imaging. Lipids 35:769–776

    PubMed  CAS  Google Scholar 

  • Thurlby PL, Trayhurn P (1979) The role of thermoregulatory thermogenesis in the development of obesity in genetically-obese (ob/ob) mice pair-fed with lean siblings. Br J Nutr 42:377–385

    PubMed  CAS  Google Scholar 

  • Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    PubMed  CAS  Google Scholar 

  • van Baak MA, Hul GB, Toubro S, Astrup A, Gottesdiener KM, DeSmet M, Saris WH (2002) Acute effect of L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure in obese men. Clin Pharmacol Ther 71:272–279

    PubMed  Google Scholar 

  • Van Gaal LF, Wauters MA, Peiffer FW, De Leeuw IH (1998) Sibutramine and fat distribution: is there a role for pharmacotherapy in abdominal/visceral fat reduction? Int J Obes Relat Metab Disord 22(Suppl 1):S38–S40 discussion S41–32

    PubMed  Google Scholar 

  • Vrydag W, Michel MC (2007) Tools to study β3-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 374:385–398

    PubMed  CAS  Google Scholar 

  • Wang M (2006) Inhibitors of 11β-hydroxysteroid dehydrogenase type 1 for the treatment of metabolic syndrome. Curr Opin Investig Drugs 7:319–323

    PubMed  CAS  Google Scholar 

  • Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113:159–170

    PubMed  CAS  Google Scholar 

  • Wang SJ, Birtles S, de Schoolmeester J, Swales J, Moody G, Hislop D, O’Dowd J, Smith DM, Turnbull AV, Arch JR (2006) Inhibition of 11β-hydroxysteroid dehydrogenase type 1 reduces food intake and weight gain but maintains energy expenditure in diet-induced obese mice. Diabetologia 49:1333–1337

    PubMed  CAS  Google Scholar 

  • Wang SJ, Cornick C, O’Dowd J, Cawthorne MA, Arch JR (2007) Improved glucose tolerance in acyl CoA:diacylglycerol acyltransferase 1-null mice is dependent on diet. Lipids Health Dis 6:2

    PubMed  Google Scholar 

  • Weyer C, Tataranni PA, Snitker S, Danforth E Jr, Ravussin E (1998) Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective β3-adrenoceptor agonist in humans. Diabetes 47:1555–1561

    PubMed  CAS  Google Scholar 

  • Wheeldon NM, McDevitt DG, Lipworth BJ (1993) Do β3-adrenoceptors mediate metabolic responses to isoprenaline. Q J Med 86:595–600

    PubMed  CAS  Google Scholar 

  • Widdowson PS, Upton R, Pickavance L, Buckingham R, Tadayyon M, Arch J, Williams G (1998) Acute hyperleptinemia does not modify insulin sensitivity in vivo in the rat. Horm Metab Res 30:259–262

    Article  PubMed  CAS  Google Scholar 

  • Wilson C, Wilson S, Piercy V, Sennitt MV, Arch JRS (1984a) The rat lipolytic β-adrenoceptor: studies using novel β-adrenoceptor agonists. Eur J Pharmacol 100:309–319

    PubMed  CAS  Google Scholar 

  • Wilson S, Arch JRS, Thurlby PL (1984b) Genetically obese C57BL/6 ob/ob mice respond normally to sympathomimetic compounds. Life Sci 35:1301–1309

    PubMed  CAS  Google Scholar 

  • Wilson S, Thurlby PL, Arch JR (1986) Substrate supply for thermogenesis induced by the β-adrenoceptor agonist BRL 26830A. Can J Physiol Pharmacol 65:113–119

    Google Scholar 

  • Wilson S, Chambers JK, Park JE, Ladurner A, Cronk DW, Chapman CG, Kallender H, Browne MJ, Murphy GJ, Young PW (1996) Agonist potency at the cloned human beta-3 adrenoceptor depends on receptor expression level and nature of assay. J Pharmacol Exp Ther 279:214–221

    PubMed  CAS  Google Scholar 

  • Wing RR, Phelan S (2005) Long-term weight loss maintenance. Am J Clin Nutr 82:222S–225S

    PubMed  CAS  Google Scholar 

  • Yaspelkis BB 3rd, Ansari L, Ramey EL, Holland GJ, Loy SF (1999) Chronic leptin administration increases insulin-stimulated skeletal muscle glucose uptake and transport. Metabolism 48:671–676

    PubMed  CAS  Google Scholar 

  • Yen TT, McKee MM, Bemis KG (1981) Ephedrine reduces weight of viable yellow obese mice (Avy/a). Life Sci 28:119–128

    PubMed  CAS  Google Scholar 

  • Yu YH, Ginsberg HN (2004) The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism. Ann Med 36:252–261

    PubMed  CAS  Google Scholar 

  • Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236

    PubMed  CAS  Google Scholar 

  • Zhan S, Ho SC (2005) Meta-analysis of the association of the Trp64Arg polymorphism in the β3 adrenergic receptor with insulin resistance. Obes Res 13:1709–1719

    PubMed  CAS  Google Scholar 

  • Zhao G, Souers AJ, Voorbach M, Falls HD, Droz B, Brodjian S, Lau YY, Iyengar RR, Gao J, Judd AS, Wagaw SH, Ravn MM, Engstrom KM, Lynch JK, Mulhern MM, Freeman J, Dayton BD, Wang X, Grihalde N, Fry D, Beno DW, Marsh KC, Su Z, Diaz GJ, Collins CA, Sham H, Reilly RM, Brune ME, Kym PR (2008) Validation of diacyl glycerolacyltransferase I as a novel target for the treatment of obesity and dyslipidemia using a potent and selective small molecule inhibitor. J Med Chem 51(3):380–383

    PubMed  CAS  Google Scholar 

  • Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba BL, Raz I, Saad MF, Swinburn BA, Knowler WC, Bogardus C, Ravussin E (1990) Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol 259:E650–E657

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks his many colleagues and collaborators in his work on β3-adrenoceptor agonists, notably Mike Cawthorne, Shelagh Wilson, John Clapham and Alberto Kaumann. He thanks Kenneth Langlands, Rob Ward, Don Smyth, Matthew Coghlan and Julie Cakebread for assistance in the preparation of this manuscript, and Frederic Preitner and Cedric Asensio for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. S. Arch.

Additional information

This article is dedicated to Professor Hans Zaagsma in recognition of his contribution to the discovery of the β3-adrenoceptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arch, J.R.S. The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from β3-adrenoceptor agonists. Naunyn-Schmied Arch Pharmacol 378, 225–240 (2008). https://doi.org/10.1007/s00210-008-0271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0271-1

Keywords

Navigation