Skip to main content

Advertisement

Log in

Novel electrophysiological properties of dronedarone: inhibition of human cardiac two-pore-domain potassium (K2P) channels

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Dronedarone is currently used for the treatment of paroxysmal and persistent atrial fibrillation (AF). Pharmacological inhibition of cardiac two-pore-domain potassium (K2P) channels results in action potential prolongation and has recently been proposed as novel antiarrhythmic strategy. We hypothesized that blockade of human K2P channels contributes to the electrophysiological efficacy of dronedarone in AF. Two-electrode voltage clamp and whole-cell patch clamp electrophysiology was used to record K2P currents from Xenopus oocytes and Chinese hamster ovary cells. All functional human K2P channels were screened for dronedarone sensitivity, revealing significant and concentration-dependent inhibition of cardiac K2P2.1 (TREK1; IC50 = 26.7 μM) and K2P3.1 channels (TASK1; IC50 = 18.7 μM) with maximum current reduction of 60.3 and 65.5 % in oocytes. IC50 values obtained from mammalian cells yielded 6.1 μM (K2P2.1) and 5.2 μM (K2P3.1). The molecular mechanism of action was studied in detail. Dronedarone block affected open and closed channels. K2P3.1 currents were reduced in frequency-dependent fashion in contrast to K2P2.1. Mutagenesis studies revealed that amino acid residues implicated in K2P3.1 drug interactions were not required for dronedarone blockade. The class III antiarrhythmic drug dronedarone targets multiple human cardiac two-pore-domain potassium channels, including atrial-selective K2P3.1 currents. K2P current inhibition by dronedarone represents a previously unrecognized mechanism of action that extends the multichannel blocking profile of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aimond F, Beck L, Gautier P, Chérif OK, Davy JM, Lorente P, Nisato D, Vassort G (2000) Cellular and in vivo electrophysiological effects of dronedarone in normal and postmyocardial infarcted rats. J Pharmacol Exp Ther 292:415–424

    PubMed  CAS  Google Scholar 

  • Altomare C, Barbuti A, Viscomi C, Baruscotti M, DiFrancesco D (2000) Effects of dronedarone on acetylcholine-activated current in rabbit SAN cells. Br J Pharmacol 130:1315–1320

    Article  PubMed  CAS  Google Scholar 

  • Bayliss DA, Sirois JE, Talley EM (2003) The TASK family: two-pore domain background K+ channels. Mol Interv 4:205–219

    Article  Google Scholar 

  • Bockenhauer D, Zilberberg N, Goldstein SA (2001) KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat Neurosci 4:486–491

    PubMed  CAS  Google Scholar 

  • Bogdan R, Goegelein H, Ruetten H (2011) Effect of dronedarone on Na+, Ca2+ and HCN channels. Naunyn Schmiedeberg's Arch Pharmacol 383:347–356

    Article  CAS  Google Scholar 

  • Brohawn SG, del Mármol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K + ion channel. Science 335:436–441

    Article  PubMed  CAS  Google Scholar 

  • Connolly SJ, Camm AJ, Halperin JL, Joyner C, Alings M, Amerena J, Atar D, Avezum Á, Blomström P, Borggrefe M, Budaj A, Chen SA, Ching CK, Commerford P, Dans A, Davy JM, Delacrétaz E, Di Pasquale G, Diaz R, Dorian P, Flaker G, Golitsyn S, Gonzalez-Hermosillo A, Granger CB, Heidbüchel H, Kautzner J, Kim JS, Lanas F, Lewis BS, Merino JL, Morillo C, Murin J, Narasimhan C, Paolasso E, Parkhomenko A, Peters NS, Sim KH, Stiles MK, Tanomsup S, Toivonen L, Tomcsányi J, Torp-Pedersen C, Tse HF, Vardas P, Vinereanu D, Xavier D, Zhu J, Zhu JR, Baret-Cormel L, Weinling E, Staiger C, Yusuf S, Chrolavicius S, Afzal R, Hohnloser SH, Investigators PALLAS (2011) Dronedarone in high-risk permanent atrial fibrillation. N Engl J Med 365:2268–2276

    Article  PubMed  CAS  Google Scholar 

  • Decher N, Maier M, Dittrich W, Gassenhuber J, Brüggemann A, Busch AE, Steinmeyer K (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett 492:84–89

    Article  PubMed  CAS  Google Scholar 

  • Decher N, Wemhöner K, Rinné S, Netter MF, Zuzarte M, Aller MI, Kaufmann SG, Li XT, Meuth SG, Daut J, Sachse FB, Maier SK (2011) Knock-out of the potassium channel TASK-1 leads to a prolonged QT interval and a disturbed QRS complex. Cell Physiol Biochem 28:77–86

    Article  PubMed  CAS  Google Scholar 

  • Dobrev D, Nattel S (2010) New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet 375:1212–1223

    Article  PubMed  CAS  Google Scholar 

  • Donner BC, Schullenberg M, Geduldig N, Hüning A, Mersmann J, Zacharowski K, Kovacevic A, Decking U, Aller MI, Schmidt KG (2011) Functional role of TASK-1 in the heart: studies in TASK-1 deficient mice show prolonged cardiac repolarization and reduced heart variability. Basic Res Cardiol 106:75–87

    Article  PubMed  CAS  Google Scholar 

  • Dorian P (2010) Clinical pharmacology of dronedarone: implications for the therapy of atrial fibrillation. J Cardiovasc Pharmacol Ther 15:15S–18S

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich JR, Biliczki P, Hohnloser SH, Nattel S (2008) Atrial-selective approaches for the treatment of atrial fibrillation. J Am Coll Cardiol 51:787–792

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich JR, Nattel S (2009) Novel approaches for pharmacological management of atrial fibrillation. Drugs 69:757–774

    Article  PubMed  CAS  Google Scholar 

  • Ellinghaus P, Scheubel RJ, Dobrev D, Ravens U, Holtz J, Huetter J, Nielsch U, Morawietz H (2005) Comparing the global mRNA expression profile of human atrial and ventricular myocardium with high-density oligonucleotide arrays. J Thorac Cardiovasc Surg 129:1383–1390

    Article  PubMed  CAS  Google Scholar 

  • Feliciangeli S, Bendahhou S, Sandoz G, Gounon P, Reichold M, Warth R, Lazdunski M, Barhanin J, Lesage F (2007) Does sumoylation control K2P1/TWIK1 background K+ channels? Cell 130:563–569

    Article  PubMed  CAS  Google Scholar 

  • Gautier P, Guillemare E, Marion A, Bertrand JP, Tourneur Y, Nisato D (2003) Electrophysiologic characterization of dronedarone in guinea pig ventricular cells. J Cardiovasc Pharmacol 41:191–202

    Article  PubMed  CAS  Google Scholar 

  • Gierten J, Ficker E, Bloehs R, Schlömer K, Kathöfer S, Scholz E, Zitron E, Kiesecker C, Bauer A, Becker R, Katus HA, Karle CA, Thomas D (2008) Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein. Br J Pharmacol 154:1680–1690

    Article  PubMed  CAS  Google Scholar 

  • Gierten J, Ficker E, Bloehs R, Schweizer PA, Zitron E, Scholz E, Karle C, Katus HA, Thomas D (2010) The human cardiac K2P3.1 (TASK-1) potassium leak channel is a molecular target for the class III antiarrhythmic drug amiodarone. Naunyn Schmiedeberg's Arch Pharmacol 381:261–270

    Article  CAS  Google Scholar 

  • Gierten J, Hassel D, Schweizer PA, Becker R, Katus HA, Thomas D (2012) Identification and functional characterization of zebrafish K2P10.1 (TREK2) two-pore-domain K+ channels. Biochim Biophys Acta 1818:33–41

    Article  PubMed  CAS  Google Scholar 

  • Goonetilleke L, Quayle J (2012) TREK-1 K+ channels in the cardiovascular system: their significance and potential as a therapeutic target. Cardiovasc Ther 30:e23–e29

    Article  PubMed  CAS  Google Scholar 

  • Guillemare E, Marion A, Nisato D, Gautier P (2000) Inhibitory effects of dronedarone on muscarinic K + current in guinea pig atrial cells. J Cardiovasc Pharmacol 36:802–805

    Article  PubMed  CAS  Google Scholar 

  • Gurney A, Manoury B (2009) Two-pore potassium channels in the cardiovascular system. Eur Biophys J 38:305–318

    Article  PubMed  CAS  Google Scholar 

  • Hohnloser SH, Crijns HJ, van Eickels M, Gaudin C, Page RL, Torp-Pedersen C, Connolly SJ, Investigators ATHENA (2009) Effect of dronedarone on cardiovascular events in atrial fibrillation. N Engl J Med 360:668–678

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki YK, Nishida K, Kato T, Nattel S (2011) Atrial fibrillation pathophysiology: implications for management. Circulation 124:2264–2274

    Article  PubMed  CAS  Google Scholar 

  • Kathofer S, Thomas D, Karle CA (2005) The novel antiarrhythmic drug dronedarone: comparison with amiodarone. Cardiovasc Drug Rev 23:217–230

    Article  PubMed  CAS  Google Scholar 

  • Lalevée N, Nargeot J, Barrére-Lemaire S, Gautier P, Richard S (2003) Effects of amiodarone and dronedarone on voltage-dependent sodium current in human cardiomyocytes. J Cardiovasc Electrophysiol 14:885–890

    Article  PubMed  Google Scholar 

  • Lalevée N, Monier B, Sénatore S, Perrin L, Sémériva M (2006) Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Curr Biol 16:1502–1508

    Article  PubMed  Google Scholar 

  • Limberg SH, Netter MF, Rolfes C, Rinné S, Schlichthörl G, Zuzarte M, Vassiliou T, Moosdorf R, Wulf H, Daut J, Sachse FB, Decher N (2011) TASK-1 channels may modulate action potential duration of human atrial cardiomyocytes. Cell Physiol Biochem 28:613–624

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Saint DA (2004) Heterogeneous expression of tandem-pore K+ channel genes in adult and embryonic rat heart quantified by real-time polymerase chain reaction. Clin Exp Pharmacol Physiol 31:174–178

    Article  PubMed  CAS  Google Scholar 

  • Lopes CM, Gallagher PG, Buck ME, Butler MH, Goldstein SA (2000) Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J Biol Chem 275:16969–16978

    Article  PubMed  CAS  Google Scholar 

  • Marban E (2002) Cardiac channelopathies. Nature 415:213–218

    Article  PubMed  CAS  Google Scholar 

  • Milac AL, Anishkin A, Fatakia SN, Chow CC, Sukharev S, Guy HR (2011) Structural models of TREK channels and their gating mechanism. Channels (Austin) 5:23–33

    Article  CAS  Google Scholar 

  • Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335:432–436

    Article  PubMed  CAS  Google Scholar 

  • Obers S, Staudacher I, Ficker E, Dennis A, Koschny R, Erdal H, Bloehs R, Kisselbach J, Karle CA, Schweizer PA, Katus HA, Thomas D (2010) Multiple mechanisms of hERG liability: K+ current inhibition, disruption of protein trafficking, and apoptosis induced by amoxapine. Naunyn Schmiedeberg's Arch Pharmacol 381:385–400

    Article  CAS  Google Scholar 

  • Patel A, Honore E (2001) Properties and regulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339–346

    Article  PubMed  CAS  Google Scholar 

  • Putzke C, Wemhöner K, Sachse FB, Rinné S, Schlichthörl G, Li XT, Jaé L, Eckhardt I, Wischmeyer E, Wulf H, Preisig-Müller R, Daut J, Decher N (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 75:59–68

    Article  PubMed  CAS  Google Scholar 

  • Rahm AK, Gierten J, Kisselbach J, Staudacher I, Staudacher K, Schweizer PA, Becker R, Katus HA, Thomas D (2012) Protein kinase C-dependent activation of human K2P18.1 K+ channels. Br J Pharmacol 166:764–773

    Article  PubMed  CAS  Google Scholar 

  • Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA (2005) Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121:37–47

    Article  PubMed  CAS  Google Scholar 

  • Ravens U (2010) Novel pharmacological approaches for antiarrhythmic therapy. Naunyn Schmiedeberg's Arch Pharmacol 381:187–193

    Article  CAS  Google Scholar 

  • Ridley JM, Milnes JT, Witchel HJ, Hancox JC (2004) High affinity HERG K(+) channel blockade by the antiarrhythmic agent dronedarone: resistance to mutations of the S6 residues Y652 and F656. Biochem Biophys Res Commun 325:883–891

    Article  PubMed  CAS  Google Scholar 

  • Schweizer PA, Becker R, Katus HA, Thomas D (2011) Dronedarone: current evidence for its safety and efficacy in the management of atrial fibrillation. Drug Des Devel Ther 5:27–39

    PubMed  CAS  Google Scholar 

  • Seyler C, Duthil-Straub E, Zitron E, Gierten J, Scholz EP, Fink RH, Karle CA, Becker R, Katus HA, Thomas D (2012) TASK1 (K2P3.1) K+ current inhibition by endothelin-1 is mediated by Rho kinase-dependent channel phosphorylation. Br J Pharmacol 165:1467–1475

    Article  PubMed  CAS  Google Scholar 

  • Staudacher K, Baldea I, Kisselbach J, Staudacher I, Rahm AK, Schweizer PA, Becker R, Katus HA, Thomas D (2011a) Alternative splicing determines mRNA translation initiation and function of human K2P10.1 K+ channels. J Physiol 589:3709–3720

    PubMed  CAS  Google Scholar 

  • Staudacher K, Staudacher I, Ficker E, Seyler C, Gierten J, Kisselbach J, Rahm AK, Trappe K, Schweizer PA, Becker R, Katus HA, Thomas D (2011b) Carvedilol targets human K2P3.1 (TASK1) K+ leak channels. Br J Pharmacol 163:1099–1110

    Article  PubMed  CAS  Google Scholar 

  • Staudacher I, Wang L, Wan X, Obers S, Wenzel W, Tristram F, Koschny R, Staudacher K, Kisselbach J, Koelsch P, Schweizer PA, Katus HA, Ficker E, Thomas D (2011c) hERG K+ channel-associated cardiac effects of the antidepressant drug desipramine. Naunyn Schmiedeberg's Arch Pharmacol 383:119–139

    Article  CAS  Google Scholar 

  • Streit AK, Netter MF, Kempf F, Walecki M, Rinné S, Bollepalli MK, Preisig-Müller R, Renigunta V, Daut J, Baukrowitz T, Sansom MS, Stansfeld PJ, Decher N (2011) A specific two-pore domain potassium channel blocker defines the structure of the TASK-1 open pore. J Biol Chem 286:13977–13984

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Goldstein SAN (2009) Two-P-domain (K2P) potassium channels: leak conductance regulators of excitability. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 1207–1220

    Chapter  Google Scholar 

  • Thomas D, Kathofer S, Zhang W, Wu K, Wimmer AB, Zitron E, Kreye VA, Katus HA, Schoels W, Karle CA, Kiehn J (2003) Acute effects of dronedarone on both components of the cardiac delayed rectifier K+ current, HERG and KvLQT1/minK potassium channels. Br J Pharmacol 140:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Plant LD, Wilkens CM, McCrossan ZA, Goldstein SAN (2008) Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron 58:859–870

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Wendt-Nordahl G, Röckl K, Ficker E, Brown AM, Kiehn J (2001) High-affinity blockade of human ether-a-go-go-related gene human cardiac potassium channels by the novel antiarrhythmic drug BRL-32872. J Pharmacol Exp Ther 297:753–761

    PubMed  CAS  Google Scholar 

  • Varró A, Takács J, Németh M, Hála O, Virág L, Iost N, Baláti B, Agoston M, Vereckei A, Pastor G, Delbruyère M, Gautier P, Nisato D, Papp JG (2001) Electrophysiological effects of dronedarone (SR 33589), a noniodinated amiodarone derivative in the canine heart: comparison with amiodarone. Br J Pharmacol 133:625–634

    Article  PubMed  Google Scholar 

  • Voigt N, Rozmaritsa N, Trausch A, Zimniak T, Christ T, Wettwer E, Matschke K, Dobrev D, Ravens U (2010) Inhibition of IK, ACh current may contribute to clinical efficacy of class I and class III antiarrhythmic drugs in patients with atrial fibrillation. Naunyn Schmiedeberg's Arch Pharmacol 381:251–259

    Article  CAS  Google Scholar 

  • Watanabe Y, Kimura J (2008) Acute inhibitory effect of dronedarone, a noniodinated benzofuran analogue of amiodarone, on Na+/Ca2+ exchange current in guinea pig cardiac ventricular myocytes. Naunyn Schmiedeberg's Arch Pharmacol 377:371–376

    Article  CAS  Google Scholar 

  • Xian Tao L, Dyachenko V, Zuzarte M, Putzke C, Preisig-Müller R, Isenberg G, Daut J (2006) The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc Res 69:86–97

    Article  Google Scholar 

  • Zhang YH, Colenso CK, Sessions RB, Dempsey CE, Hancox JC (2011) The hERG K(+) channel S4 domain L532P mutation: characterization at 37 °C. Biochim Biophys Acta 1808:2477–2487

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Gütermann, Christine Jekel, and Bianca Menrath for excellent technical assistance and Stefan Kallenberger for critical comments and helpful discussions. This work was supported by grants from the German Heart Foundation/German Foundation of Heart Research (Kaltenbach Scholarship to F.W. and project F/06/10 to D.T.) and from the Max Planck Society (TANDEM project to P.A.S.).

Conflict of interest

D.T. serves on advisory boards for and received financial support for lectures from Sanofi Aventis. The remaining authors report no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Thomas.

Additional information

C. Schmidt and F. Wiedmann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, C., Wiedmann, F., Schweizer, P.A. et al. Novel electrophysiological properties of dronedarone: inhibition of human cardiac two-pore-domain potassium (K2P) channels. Naunyn-Schmiedeberg's Arch Pharmacol 385, 1003–1016 (2012). https://doi.org/10.1007/s00210-012-0780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0780-9

Keywords

Navigation