Skip to main content

Advertisement

Log in

Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objective

Auditory sensory gating, a biological measurement of the ability to suppress the evoked response to the second of two auditory stimuli, is diminished in people with schizophrenia. Deficits in sensory gating are associated with attentional impairment, and may contribute to cognitive symptoms and perceptual disturbances. This inhibitory process, which involves the alpha7 nicotinic receptor mediated release of gamma-aminobutyric acid (GABA) by hippocampal interneurons, represents a potential new target for therapeutic intervention in schizophrenia.

Method

This paper will review several lines of evidence implicating the nicotinic-cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia and the evidence that alpha7 nicotinic receptor agonists may ameliorate some of these deficits.

Results

Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. Single nucleotide polymorphisms of the promoter region of this gene are more frequent in people with schizophrenia. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. Clozapine is able to reverse auditory sensory gating impairment, probably through an alpha7 nicotinic receptor mechanism, in both humans and animal models with repeated dosing. The alpha7 nicotinic agonist 3-2,4 dimethoxybenzylidene anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and improves several cognitive measures.

Conclusion

Alpha-7 nicotinic receptor agonists appear to be reasonable candidates for the treatment of cognitive and perceptual disturbances in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams CE, Stevens KE, Kem WR, Freedman R (2000) Inhibition of nitric oxide synthase prevents alpha7 nicotinic receptor-mediated restoration of inhibitory auditory gating in rat hippocampus. Brain Res 877:235–44

    Article  CAS  PubMed  Google Scholar 

  • Adler LE, Waldo MC, Freedman R (1985) Neurophysiologic studies of sensory gating in schizophrenia: comparison of auditory and visual responses. Biol Psychiatry 20:1284–1296

    CAS  PubMed  Google Scholar 

  • Adler LE, Hoffer LD, Griffith J, Waldo MC, Freedman R (1992) Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiatry 32:607–616

    CAS  PubMed  Google Scholar 

  • Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150:1856–1861

    CAS  PubMed  Google Scholar 

  • Adler LE, Olincy A, Waldo MC, Harris JG, Griffith J, Stevens KE, Flach K, Nagamoto HT, Bickford PC, Leonard S, Freedman R (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 24:189–202

    CAS  PubMed  Google Scholar 

  • Albuquerque EX, Pereira EFR, Braga MFM, Alkondon M (1998) Contribution of nicotinic receptors to the function of synapses in the central nervous system: the action of choline as a selective agonist of alpha7 receptors. J Physiol (Paris) 92:309–316

    Google Scholar 

  • Albuquerque EX, Pereira EFR, Mike A, Eisenbreg HM, Maelicke A, Alkondon M (2000) Neuronal nicotinic receptors in synaptic functions in humans and rats: physiological and clinical relevance. Behav Brain Res 113:131–141

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Braga MFM, Pereira EFR, Maelicke A, Albuquerque EX (2000) Alpha-7 nicotinic acetylcholine receptors and modulation of gabaergic synaptic transmission in the hippocampus. Eur J Pharmacol 393:59–67

    Article  CAS  PubMed  Google Scholar 

  • Arendash GW, Sengstock GJ, Sanberg PR, Kem WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674:252–259

    Article  CAS  PubMed  Google Scholar 

  • Armitage AK, Hall GH, Sellers CM (1969) Effects of nicotine on electrocortical activity and acetylcholine release from the cat cerebral cortex. Br J Pharmacol 35:152–160

    CAS  PubMed  Google Scholar 

  • Balfour DJK (1989) Influence of nicotine on the release of monoamines in the brain. Prog Brain Res 79:165–172

    CAS  PubMed  Google Scholar 

  • Beani L, Bianchi C, Ferraro L, Nilsson L, Nordberg A, Romanelli L, Spalluto P, Sundwall A, Tanganelli S (1989) Effect of nicotine on the release of acetylcholine and amino acids in the brain. Prog Brain Res 79:149–155

    CAS  PubMed  Google Scholar 

  • Benowitz NL (1998) Summary: risks and benefits of nicotine. In: Benowitz NL (ed) Nicotine safety and toxicity. Oxford University Press, New York, pp 185–88

  • Benowitz NL (2003) Basic cardiovascular research and its implications for the medicinal use of nicotine. J Am Coll Cardiol 41:497–498

    Article  PubMed  Google Scholar 

  • Benowitz NL, Gourlay SG (1997) Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy. J Am Acad Cardiol 29:1422–1431

    CAS  Google Scholar 

  • Bhagat B, Kramer SZ (1967) The effects of nicotine and other drugs on the release of injected 3H-norepinephrine and on endogenous norepinephrine levels in the rat brain. Eur J Pharmacol 2:234–235

    Article  CAS  PubMed  Google Scholar 

  • Bickford PC, Wear KD (1995) Restoration of sensory gating of auditory evoked response by nicotine in fimbria-fornix lesioned rats. Brain Res 705:235–240

    Article  CAS  PubMed  Google Scholar 

  • Boutros NN, Zouridakis G, Overall J (1991) Replication and extension of P50 findings in schizophrenia. Clin Electroencephalogr 22:40–45

    CAS  PubMed  Google Scholar 

  • Breese CR, Lee MJ, Adams CE, Sullivan B, Logel J, Gillen KM, Marks MJ, Collins AC, Leonard S (2000) Abnormal regulation of high affinity nicotine receptors in subjects with schizophrenia. Neuropsychopharmacology 23:351–364

    Article  CAS  PubMed  Google Scholar 

  • Briggs CA, McKenna DG, Piattoni-Kaplan M (1995) Human alpha7 nicotinic acetylcholine receptor responses to novel ligands. Neuropharmacology 34:583–590

    Article  CAS  PubMed  Google Scholar 

  • Briggs CA, Anderson DJ, Brioni JD, Buccafusco JJ, Buckley MJ, Campbell JE, Decker MW, Donnelly-Roberts D, Elliot RL, Gopalakrishnan M, Holladay MW, Hui Y-H, Jackson WJ, Kim DJB, Marsh KC, O’Neill A, Prendergast MA, Ryther KB, Sullivan JP, Arneric SP (1996) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol Biochem Behav 57:231–241

    Article  Google Scholar 

  • Broide RS, Leslie FM (1999) The alpha7 nicotinic acetylcholine receptor in neuronal plasticity. Mol Neurobiol 20:1–16

    CAS  PubMed  Google Scholar 

  • Chalon S, Moreno Jr H, Benowitz NL, Hoffman BB, Blaschke TF (2000) Nicotine impairs endothelium-dependent dilatation in human veins in vivo. Clin Pharmacol Ther 67:391–397

    Article  CAS  PubMed  Google Scholar 

  • Chini B, Raimond E, Elgoyhen AB, Moralli D, Balzaretti M, Heinemann S (1994) Molecular cloning and chromosomal localization of the human alpha7-nicotinic receptor subunit gene (CHRNA7). Genomics 19:379–381

    Article  CAS  PubMed  Google Scholar 

  • Clementz BA (1998) Psychophysiological measures of (dis)inhibition as liability indicators for schizophrenia. Psychophysiology 35:648–668

    Google Scholar 

  • Clementz BA, Geyer MA, Braff DL (1997) P50 suppression among schizophrenia and normal comparison subjects: a methodological analysis. Biol Psychiatry 41:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Clementz BA, Geyer MA, Braff DL (1998) Poor P50 suppression among schizophrenia patients and their first-degree biological relatives. Am J Psychiatry 155:1691–1694

    CAS  PubMed  Google Scholar 

  • Combs DR, Advokat C (2000) Antipsychotic medication and smoking prevalence in acutely hospitalized patients with chronic schizophrenia. Schizophr Res 46:129–137

    Article  CAS  PubMed  Google Scholar 

  • Coon H, Plaetke R, Holik J, Hoff M, Myles-Worsley M, Waldo MC, Freedman R, Byerley W (1993) Use of a neurophysiological trait in linkage analysis of schizophrenia. Biol Psychiatry 34:277–289

    Article  CAS  PubMed  Google Scholar 

  • Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N, Kerwin R, Perry R, Perry E (1999) Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in thalamus. J Neurochem 73:1590–1597

    Article  CAS  PubMed  Google Scholar 

  • Court J, Piggot M, Lloyd S, Cookson N, Ballard C, McKeith I, Perry R, Perry E (2000) Nicotine binding in human striatum: elevation in schizophrenia and reductions in dementia with Lewy bodies, Parkinson’s disease and Alzheimer’s disease and in relation to neuroleptic medication. Neuroscience 98:79–87

    Article  CAS  PubMed  Google Scholar 

  • Craddock N, Lendon C (1999) Chromosome workshop: chromosomes 11, 14, and 15. Am J Med Genet 88:244–54

    Article  CAS  PubMed  Google Scholar 

  • Crowley-Weber CL, Dvorakova K, Crowley C, Bernstein H, Bernstein C, Garewal H, Payne CM (2003) Nicotine increases oxidative stress, activates NF-kB and GRP78, induces apoptosis and sensitizes cells to genotoxic/xenobiotic stresses by a multiple stress inducer, deoxycholate: relevance to colon carcinogenesis. Chem-Biol Interact 145:53–66

    Google Scholar 

  • Cullum CM, Harris JG, Waldo MC, Smernoff E, Madison A, Nagamoto HT, Griffith J, Adler LE, Freedman R (1993) Neurophysiological and neuropsychological evidence for attentional dysfunction in schizophrenia. Schizophr Res 10:131–141

    Article  CAS  PubMed  Google Scholar 

  • Curtis L, Blouin J-L, Radhakrishna U, Gehrig C, Lasseter VK, Wolyniec P, Nestadt G, Dombroski B, Kazazian HH, Pulver AE, Housman D, Bertrand D, Antonarakis SE (1999) No evidence for linkage between schizophrenia and markers at chromosome 15q13–14. Am J Med Genet 88:109–112

    CAS  PubMed  Google Scholar 

  • Dalack GW, Meador-Woodruff JH (1996) Smoking, smoking withdrawal and schizophrenia: case reports and a review of the literature. Schizophr Res 22:133–141

    Article  CAS  PubMed  Google Scholar 

  • Dalack GW, Healy DJ, Meador-Woodruff JH (1998) Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry 155:1490–1501

    CAS  PubMed  Google Scholar 

  • Dalack GW, Becks L, Hill E, Pomerleau OF, Meador-Woodruff JH (1999) Nicotine withdrawal and psychiatric symptoms in cigarette smokers with schizophrenia. Neuropsychopharmacology 21:195–202

    Article  CAS  PubMed  Google Scholar 

  • Damaj MI, Glassco W, Dukat M, Martin BR (1999) Pharmacological characterization of nicotine-induced seizures in mice. J Pharmacol Exp Ther 291:1284–1291

    CAS  PubMed  Google Scholar 

  • De Fiebre CM, Meyer EM, Henry JC, Muraskin SI, Kem WR, Papke RL (1995) Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic alpha7/125 i-alpha-bungarotoxin receptor subtypes. Mol Pharmacol 47:164–171

    PubMed  Google Scholar 

  • De Leon J, Dadvand M, Canuso C, Odom White A, Stanilla JK, Simpson GM (1995) Schizophrenia and smoking: an epidemiological survey in a state hospital. Am J Psychiatry 152:453–455

    PubMed  Google Scholar 

  • Decina P, Caracci G, Sandik R, Berman W, Mukherjee S, Scapicchio P (1990) Cigarette smoking and neuroleptic-induced parkinsonism. Biol Psychiatry 28:502–508

    Article  CAS  PubMed  Google Scholar 

  • Dépatie L, O’Driscoll GA, Holahan A, Atkinson V, Thayundayil JX, Kin N, Lal S (2002) Nicotine and behavioral markers of risk for schizophrenia: a double blind, placebo controlled, cross-over study. Neuropsychopharmacology 27:1056–1970

    Article  PubMed  Google Scholar 

  • Diwan A, Castine M, Pomerleau CS, Meador-Woodruff JH, Dalack GW (1998) Differential prevalence of cigarette smoking in patients with schizophrenia vs mood disorders. Schizophr Res 33:113–118

    Article  CAS  PubMed  Google Scholar 

  • Dobelis P, Hutton S, Lu Y, Collins AC (2003) GABAergic systems modulate nicotinic receptor-mediated seizures in mice. J Pharmacol Exp Ther 306:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Durany N, Zöchling R, Boissl KW, Paulus W, Ransmayr G, Tatschner T, Danielczyk W, Jellinger K, Deckert J, Riederer P (2000) Human post-mortem striatal alpha4/beta2 nicotinic acetylcholine receptor density in schizophrenia and Parkinson’s syndrome. Neurosci Lett 287:109–112

    Article  CAS  PubMed  Google Scholar 

  • Elliott BM, Faraday MM, Grunberg NE (2003) Effects of nicotine on heart dimensions and blood volume in male and female rats. Nicotine Tobacco Res 5:341–348

    Article  CAS  Google Scholar 

  • Fang Q, Sun H, Mayhan WG (2003) Impairment of nitric oxide synthase-dependent dilatation of cerebral arterioles during infusion of nicotine. Am J Physiol-Heart Circ Physiol 284:528–534

    Google Scholar 

  • Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, Dunwiddle TV (1998) Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci 18:1187–1195

    CAS  PubMed  Google Scholar 

  • Freedman R, Adler LE, Waldo MC, Pachtman E, Franks RD (1983) Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: comparisons of medicated and drug-free patients. Biol Psychiatry 18:537–551

    CAS  PubMed  Google Scholar 

  • Freedman R, Adler LE, Bickford PC, Byerley W, Coon H, Cullum CM, Griffith J, Harris JG, Leonard S, Miller C, Myles-Worsley M, Nagamoto HT, Rose GM, Waldo MC (1994) Schizophrenia and nicotinic receptors. Harvard Rev Psychiatry:179–192

    Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33

    Google Scholar 

  • Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr F, Wender P, Yaw J, Young DA, Breese CR, Adams CE, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 94:587–592

    CAS  PubMed  Google Scholar 

  • Freedman R, Leonard S, Olincy A, Kaufmann CA, Malaspina D, Cloninger CR, Svrakic DM, Faraone SV, Tsuang MT (2001) Evidence for the multigenic inheritance of schizophrenia. Am J Med Genet 105:794–800

    Article  CAS  PubMed  Google Scholar 

  • George TP, Serynak MJ, Ziedonis DM, Woods SW (1995) Effects of clozapine on smoking in chronic schizophrenic outpatients. J Clin Psychiatry 56:344–346

    CAS  PubMed  Google Scholar 

  • George TP, Vessicchio JC, Termine A, Sahady D, Head CA, Pepper WT, Kosten TR, Wexler BE (2001) Effects of smoking abstinence on visuospatial working memory function in schizophrenia. Neuropsychopharmacology 26:75–85

    Article  Google Scholar 

  • Girod R, Jareb M, Moss J, Role L (2003) Mapping of presynaptic nicotinic acetylcholine receptors using fluorescence imaging of neuritic calcium. J Neurosci Meth 122:109–122

    Article  CAS  Google Scholar 

  • Glassman AH (1993) Cigarette smoking: implications for psychiatric illness. Am J Psychiatry 150:546–553

    PubMed  Google Scholar 

  • Goff DC, Henderson DC, Amico E (1992) Cigarette smoking in schizophrenia: relationship to psychopathology and medication side effects. Am J Psychiatry 149:1189–1194

    CAS  PubMed  Google Scholar 

  • Gotti C, Fornasari D, Clementi F (1997) Human neuronal nicotinic receptors. Prog Neurobiol 53:199–237

    CAS  PubMed  Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    CAS  PubMed  Google Scholar 

  • Grenhoff J, Aston-Jones G, Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128:351–358

    PubMed  Google Scholar 

  • Griffith J, Hoffer LD, Adler LE, Zerbe GO, Freedman R (1995) Effects of sound intensity on a mid-latency evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Psychophysiology 32:460–466

    CAS  PubMed  Google Scholar 

  • Griffith JM, O’Neill J, Petty F, Garver D, Young D, Freedman R (1998) Nicotinic receptor desensitization and sensory gating deficits in schizophrenia. Biol Psychiatry 44:98–106

    Article  CAS  PubMed  Google Scholar 

  • Grottick A, Higgins G (2000) Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117:197–208

    CAS  PubMed  Google Scholar 

  • Grottick A, Wyler R, Higgins G (2000a) The alpha4/beta2 agonist SIB 1765F, but not the alpha7 agonist AR-R 17779, cross-sensitizes to the psychostimulant effects of nicotine. Psychopharmacology 150:233–236

    Article  CAS  PubMed  Google Scholar 

  • Grottick AJ, Trube G, Corrigal WA, Huwyler J, Malherbe P, Wyler R, Higgins GA (2000b) Evidence that nicotinic alpha7 receptors are not involved in the hyperlocomotor and rewarding effects of nicotine. J Pharmacol Exp Ther 294:1112–1119

    CAS  PubMed  Google Scholar 

  • Guan Z-Z, Zhang X, Blennow K, Nordberg A (1999) Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 10:1779–1782

    CAS  PubMed  Google Scholar 

  • Gueorguiev VD, Zeman RJ, Meyer EM, Sabban EL (2000) Involvement of alpha7 nicotinic acetylcholine receptors in activation of tyrosine hydroxylase and dopamine beta-hydroxylase gene expression in PC12 cells. J Neurochem 75:1997–2005

    Article  CAS  PubMed  Google Scholar 

  • Hahn B, Sharples CG, Wonnacott S, Shoaib M, Stolerman IP (2003) Attentional effects of nicotinic agonists in rats. Neuropharmacology 44:1054–1067

    Article  CAS  PubMed  Google Scholar 

  • Hakki A, Friedman H, Pross S (2002) Nicotine modulation of apoptosis in human coronary artery endothelial cells. Int Immunopharmacol 2:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Hershman KM, Freedman R, Bickford PC (1995) GABA-B antagonists diminish the inhibitory gating of auditory response in the rat hippocampus. Neuroscience Letters 190:133–136

    Article  CAS  PubMed  Google Scholar 

  • Heusch WL, Maneckjee R (1998) Signaling pathways involved in nicotine regulation of apoptosis of human lung cancer cells. Carcinogenesis 19:551–556

    Article  CAS  PubMed  Google Scholar 

  • Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143:993–997

    PubMed  Google Scholar 

  • Hunter BE, De Fiebre CM, Papke RL, Kem WR, Meyer E (1994) A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci Lett 168:130–134

    Article  CAS  PubMed  Google Scholar 

  • Ji D, Dani JA (2000) Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons. J Neurophysiol 83:2682–2690

    Google Scholar 

  • Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22:555–561

    Article  CAS  PubMed  Google Scholar 

  • Judd LL, McAdams L, Budnick B, Braff DL (1992) Sensory gating deficits in schizophrenia: new results. Am J Psychiatry 149:488–493

    CAS  PubMed  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry 45:789–796

    CAS  PubMed  Google Scholar 

  • Kelly C, McCreadie RG (1999) Smoking habits, current symptoms, and premorbid characteristics of schizophrenic patients in Nithsdale, Scotland. Am J Psychiatry 156:1751–1757

    CAS  PubMed  Google Scholar 

  • Kem WR (2000) The brain alpha7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: studies with DMXBA (GTS-21). Behav Brain Res 113:169–181

    CAS  PubMed  Google Scholar 

  • Kem WR, Abbott BC, Coates RM (1971) Isolation and structure of a hoplonemertine toxin. Toxicon 9:15–22

    Article  CAS  PubMed  Google Scholar 

  • Kem WR, Mahnir VM, Lin B, Prokai-Tartrai K (1996) Two primary GTS-21 metabolites are potent partial agonists at alpha7 nicotinic receptors expressed in the Xenopus oocyte. Soc Neurosci Abstr 22:268

    Google Scholar 

  • Kem WR, Mahnir VM, Papke RL, Lingle CJ (1997) Anabaseine is a potent agonist on muscle and neuronal alpha-bungarotoxin-sensitive nicotinic receptors. J Pharmacol Exp Ther 283:979–992

    CAS  PubMed  Google Scholar 

  • Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE, Burnett AL (2003) Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 28:542–551

    Article  PubMed  Google Scholar 

  • Klein C, Andresen B (1991) On the influence of smoking upon smooth pursuit eye movements of schizophrenics and normal controls. J Psychophysiol 5:361–369

    Google Scholar 

  • Klein C, Andresen B, Thom E (1993) Blinking, alpha brain waves and smoking in schizophrenia. Acta Psychiatr Scand 87:172–178

    CAS  PubMed  Google Scholar 

  • Lambe EK, Piccioto MR, Aghajanian GK (2003) Nicotine induced glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28:216–225

    Article  CAS  PubMed  Google Scholar 

  • Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH (2000) Smoking and mental illness: a population-based prevalence study. JAMA 284:2606–2610

    Article  CAS  PubMed  Google Scholar 

  • Léna C, Changeux J-P (1998) Allosteric nicotinic receptors, human pathologies. J Physiol (Paris) 92:63–74

    Google Scholar 

  • Leonard S, Bertrand D (2001) Neuronal nicotinic receptors: from structure to function. Nicotine Tobacco Res 3:203–223

    Article  CAS  Google Scholar 

  • Leonard S, Gault J, Moore T, Hopkins J, Robinson M, Olincy A, Adler LE, Cloninger CR, Kaufmann CA, Tsuang MT, Faraone SV, Malaspina D, Svrakic DM, Freedman R (1998) Further Investigation of a chromosome 15 locus in schizophrenia: analysis of affected sibpairs from the NIMH genetics initiative. Am J Med Genet 81:308–312

    CAS  PubMed  Google Scholar 

  • Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P, Zerbe GO, Olincy A, Ross RG, Adler LE, Freedman R (2002) Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry 59:1085–1096

    Article  CAS  PubMed  Google Scholar 

  • Levin ED, Rezvani AH (2000) Development of nicotinic drug therapy for cognitive disorders. Eur J Pharmacol 393:141–146

    CAS  PubMed  Google Scholar 

  • Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138:217–230

    Article  CAS  PubMed  Google Scholar 

  • Levin ED, Wilson W, Rose JE, McEvoy J (1996) Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology 15:429–436

    CAS  PubMed  Google Scholar 

  • Light GA, Geyer MA, Clementz BA, Cadenhead KS, Braff DL (2000) Normal P50 suppression in schizophrenia patients treated with atypical antipsychotic medications. Am J Psychiatry 157:767–771

    CAS  PubMed  Google Scholar 

  • Liu C-M, Hwu H-G, Lin M-W, Ou-Yang W-C, Lee SF-C, Fann CSJ, Wong S-H, Hsieh S-H (2001) Suggestive evidence for linkage of schizophrenia to markers at chromosome 15q13–14 in Taiwanese families. Am J Med Genet 105:658–661

    CAS  PubMed  Google Scholar 

  • Luntz-Leybman V, Bickford PC, Freedman R (1992) Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587:130–136

    CAS  PubMed  Google Scholar 

  • Lyons MJ, Bar JL, Kreman WS, Toomey R, Eisen SA, Goldberg J, Faraone SV, Tsuang M (2002) Nicotine and familial vulnerability to schizophrenia: a discordant twin study. J Abnorm Psychol 111:687–693

    Article  PubMed  Google Scholar 

  • Machu TK, Hamilton ME, Frye TF, Shanklin CL, Harris MC, Sun H, Tenner Jr. TE, Soti FS, Kem WR (2001) Benzylidene analogs of anabaseine display partial agonist and antagonist properties at the mouse 5-hydroxytryptamine-3A receptor. J Pharmacol Exp Ther 299:1112–1119

    CAS  PubMed  Google Scholar 

  • Marutle A, Zhang X, Court J, Piggot M, Johnson M, Perry R, Perry E, Nordberg A (2001) Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat 22:115–126

    Article  CAS  PubMed  Google Scholar 

  • Masterson E, O’Shea B (1984) Smoking and malignancy in schizophrenia. Br J Psychiatry 145:429–432

    CAS  PubMed  Google Scholar 

  • McEvoy JP, Freudenreich O, Wilson W (1999) Smoking and therapeutic response to clozapine in patients with schizophrenia. Biol Psychiatry 46:125–129

    Article  CAS  PubMed  Google Scholar 

  • Meyer EM, De Fiebre CM, Hunter BE, Simpkins CE, Frauworth N, De Fiebre NEC (1994) Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behaviors. Drug Dev Res 31:127–134

    CAS  Google Scholar 

  • Meyer EM, Tay ET, Papke RL, Meyers C, Huang G-l, De Fiebre CM (1997) 3-2,4-Dimethoxybenzylidene-anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res 768:49–56

    Article  CAS  PubMed  Google Scholar 

  • Meyer EM, Kuryatov A, Gerzanich V, Lindstrom J, Papke RL (1998a) Analysis of 3-(4-hydroxy, 2-methoxybenzylidene)anabaseine selectivity and activity at human and rat alpha7 nicotinic receptors. J Pharmacol Exp Ther 287:918–925

    CAS  PubMed  Google Scholar 

  • Meyer EM, Tay ET, Zoltewicz JA, Meyers C, King MA, Papke RL, De Fiebre CM (1998b) Neuroprotective and memory-related actions of novel alpha7 nicotinic agents with different mixed agonist/antagonist properties. J Pharmacol Exp Ther 284:1026–1032

    CAS  PubMed  Google Scholar 

  • Mullen G, Napier J, Balestra M, DeCory T, Hale G, Macor J, Mack R, Loch III J, Wu E, Kover A, Verhoest P, Sampognaro A, Phillips E, Zhu Y, Murray R, Griffith R, Blosser J, Gurley D, Machulskis A, Zongrone J, Rosen A, Gordon J (2000) (−)-Spiro[1-azabicyclo[2.2.2]octane-3,5’-oxazolidin-2’-one], a conformationally restricted analogue of acetylcholine, is a highly selective full agonist at the alpha7 nicotinic acetylcholine receptor. J Med Chem 43:4045–4050

    Article  CAS  PubMed  Google Scholar 

  • Nagamoto HT, Adler LE, McRae KA, Huettl P, Cawthra E, Gerhardt G, Hea R, Griffith J (1999) Auditory P50 in schizophrenics on clozapine: improved gating parallels clinical improvement and changes in plasma 3-methoxy-4-hydroxyphenylglycol. Neuropsychobiology 39:10–17

    CAS  PubMed  Google Scholar 

  • Nanri M, Yamamoto J, Miyake H, Watanabe H (1998) Protective effect of GTS-21, a novel nicotinic receptor agonist, on delayed neuronal death induced by ischemia in gerbils. Jpn J Pharmacol 76:23–29

    Article  CAS  PubMed  Google Scholar 

  • Neves-Pereira M, Bassett AS, Honer WG, Lang D, King NA, Kennedy JL (1998) No evidence for linkage of the CHRNA7 gene region in Canadian schizophrenia families. Am J Med Gen 81:361–363

    CAS  PubMed  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1995) Nicotine dependence, midbrain dopamine systems and psychiatric disorders. Pharmacol Toxicol 76:157–162

    CAS  PubMed  Google Scholar 

  • Nomikos GG, Schilström B, Hildebrand BE, Panagis G, Grenhoff J, Svensson TH (2000) Role of alpha7 nicotinic receptors in nicotine dependence and implications for psychiatric illness. Behav Brain Res 113:97–103

    CAS  PubMed  Google Scholar 

  • Olincy A, Young DA, Freedman R (1997) Increased levels of the nicotine metabolite cotinine in schizophrenic smokers compared to other smokers. Biol Psychiatry 42:1–5

    Article  CAS  PubMed  Google Scholar 

  • Olincy A, Ross RG, Young DA, Roath M, Freedman R (1998) Improvement in smooth pursuit eye movements after cigarette smoking in schizophrenic patients. Neuropsychopharmacology 18:175–185

    Article  CAS  PubMed  Google Scholar 

  • Olincy A, Johnson LL, Ross RG (2003) Differential effects of cigarette smoking on performance of a smooth pursuit and a saccadic eye movement task in schizophrenia. Psychiatry Res 117:223–236

    Article  PubMed  Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology 156:284–290

    Google Scholar 

  • Papke RL, Meyer E, Nutter T, Uteshev VV (2000) Alpha-7 receptor-selective agonists and modes of alpha7 receptor activation. Eur J Pharmacol 393:179–195

    Article  CAS  PubMed  Google Scholar 

  • Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    CAS  PubMed  Google Scholar 

  • Pérez de la Mora M, Mendez-Franco J, Salceda R, Aguirre JA, Fuxe K (1991) Neurochemical effects of nicotine on glutamate and GABA mechanisms in the rat brain. Acta Physiol Scand 141:241–250

    PubMed  Google Scholar 

  • Piccioto MR, Caldarone BJ, King SL, Zachariou V (2000) Nicotinic Receptors in the brain: links between molecular biology and behavior. Neuropsychopharmacology 22:451–465

    Article  CAS  PubMed  Google Scholar 

  • Riley BP, Makoff A, Mogudi-Carter M, Jenkins T, Williamson R, Collier D, Murray R (2000) Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families. Am J Med Genet 96:196–201

    CAS  PubMed  Google Scholar 

  • Ross RG, Olincy A, Harris JG, Radant A, Hawkins M, Adler LE, Freedman R (1999) Evidence for bilineal inheritance of physiological indicators of risk in childhood-onset schizophrenia. Am J Med Genet 88:188–199

    Article  CAS  PubMed  Google Scholar 

  • Rosse RB, Deutsch SI (2002) Adjuvant galantamine administration improves negative symptoms in a patient with treatment-refractory schizophrenia. Clin Neuropharmacol 25:272–275

    Article  PubMed  Google Scholar 

  • Schreiber R, Dalmus M, De Vry J (2002) Effects of the alpha4/beta2 and alpha7 nicotine acetylcholine receptor agonists on prepulse inhibition of the acoustic startle response in rats and mice. Psychopharmacology 159:248–257

    Article  CAS  PubMed  Google Scholar 

  • Sherr JD, Myers C, Avila MT, Elliott A, Blaxton TA, Thaker GK (2002) The effects of nicotine on specific eye tracking measures in schizophrenia. Biol Psychiatry 52:721–728

    Article  CAS  PubMed  Google Scholar 

  • Shirazi-Southall S, Rodriguez DE, Nomikos GG (2002) Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus. Neuropsychopharmacology 26:583–594

    Google Scholar 

  • Siegal C, Waldo MC, Mizner G, Adler LE, Freedman R (1984) Deficits in sensory gating in schizophrenic patients and their relatives. Arch Gen Psychiatry 41:607–612

    CAS  PubMed  Google Scholar 

  • Simosky JK, Stevens KE, Kem WR, Freedman R (2001) Intragastric DMXBA, an alpha7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol Psychiatry 50:493–500

    Article  CAS  PubMed  Google Scholar 

  • Simosky JK, Stevens KE, Adler LE, Freedman R (2003) Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology 165:386–396

    CAS  PubMed  Google Scholar 

  • Smith RC, Singh A, Infante M, Khandat A, Kloos A (2002) Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia. Neuropsychopharmacology 27:479–497

    Article  CAS  PubMed  Google Scholar 

  • Stevens KE, Wear KD (1997) Normalizing effects of nicotine and a novel nicotinic agonist on hippocampal auditory gating in two animal models. Pharmacol Biochem Behav 57:869–874

    CAS  PubMed  Google Scholar 

  • Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks MJ, Rose GM (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15:152–162

    Google Scholar 

  • Stevens KE, Kem WR, Mahnir VM, Freedman R (1998) Selective alpha7 nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology 136:320–327

    Article  CAS  PubMed  Google Scholar 

  • Stevens KE, Kem WR, Freedman R (1999) Selective alpha7 nicotinic receptor stimulation normalizes chronic cocaine-induced loss of hippocampal sensory inhibition in C3H mice. Biol Psychiatry 46:1443–1450

    Article  CAS  PubMed  Google Scholar 

  • Summers KL, Giacobini E (1995) Effects of local and repeated systemic administration of (–)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 20:753–759

    CAS  PubMed  Google Scholar 

  • Summers KL, Cuadra G, Naritoku D, Giacobini E (1994) Effects of nicotine on levels of acetylcholine and biogenic amines in rat cortex. Drug Dev Res 31:108–119

    CAS  Google Scholar 

  • Summers KL, Kem WR, Giacobini E (1997) Nicotinic agonist modulation of neurotransmitter levels in the rat frontoparietal cortex. Jpn J Pharmacol 74:139–146

    CAS  PubMed  Google Scholar 

  • Svensson TH, Grenhoff J, Engberg G (1990) Effect of nicotine on dynamic function of brain catacholamine neurons. Ciba Foundation Symposium 152:169–180

    CAS  PubMed  Google Scholar 

  • Taiminen TJ, Salokangas RKR, Saarijärvi S, Niemi H, Lehto H, Ahola V, Syvälahti E (1998) Smoking and cognitive deficits in schizophrenia: a pilot study. Addict Behav 23:263–266

    Article  CAS  PubMed  Google Scholar 

  • Tani Y, Saito K, Imoto M, Ohno T (1998) Pharmacological characterization of nicotinic receptor-mediated acetylcholine release in rat brain- an in vivo microdialysis study. Eur J Pharmacol 351:181–188

    CAS  PubMed  Google Scholar 

  • Tsuang DW, Skol AD, Faraone SV, Bingham S, Young KA, Prabhudesai S, Haverstock SL, Mena F, Menon AS, Bisset D, Pepple J, Sauter F, Baldwin C, Weiss D, Collins J, Boehnke M, Schellenberg GD, Tsuang MT (2001) Examination of genetic linkage of chromosome 15 to schizophrenia in a large Veterans Affairs Cooperative Study sample. Am J Med Gene 105:662–668

    CAS  PubMed  Google Scholar 

  • Tung C-S, Grenhoff J, Svensson TH (1990) Nicotine counteracts midbrain dopamine cell dysfunction induced by prefrontal cortex inactivation. Acta Physiol Scand 138:427–428

    CAS  PubMed  Google Scholar 

  • Van Haaren F, Anderson KG, Haworth SC, Kem WR (1999) GTS-21, a mixed nicotinic receptor agonist/antagonist, does not affect the nicotine cue. Pharmacol Biochem Behav 64:439–444

    Google Scholar 

  • Venables PH (1992) Hippocampal function and schizophrenia: experimental psychological evidence. Ann N Y Acad Sci 658:111–127

    CAS  PubMed  Google Scholar 

  • Vidal C (1994) Nicotinic potentiation of glutamatergic synapses in the prefrontal cortex: new insight into the analysis of the role of nicotinic receptors in cognitive functions. Drug Dev Res 31:120–126

    CAS  Google Scholar 

  • Waldo MC, Carey G, Myles-Worsley M, Cawthra E, Adler LE, Nagamoto HT, Wender P, Byerley W, Plaetke R, Freedman R (1991) Codistribution of a sensory gating deficit and schizophrenia in multi-affected families. Psychiatry Res 39:257–268

    Article  CAS  PubMed  Google Scholar 

  • Waldo MC, Cawthra E, Adler LE, Dubester S, Staunton M, Nagamoto HT, Baker N, Madison A, Simon J, Scherzinger A, Drebing C, Gerhardt G, Freedman R (1994) Auditory sensory gating, hippocampal volume, and catecholamine metabolism in schizophrenics and their siblings. Schizophr Res 12:93–106

    CAS  PubMed  Google Scholar 

  • Ward PB, Hoffer LD, Liebert B, Catts SV, O’Donnell M, Adler LE (1996) Replication of a P50 auditory sensory gating deficit in Australian patients with schizophrenia. Psychiatry Res 64:121–135

    Article  CAS  PubMed  Google Scholar 

  • West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA (2003) Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 111:81–90

    Article  CAS  PubMed  Google Scholar 

  • Westfall TC, Grant H, Perry H (1983) Release of dopamine and 5-hhdroxytryptamine from rat striatal slices following activation of nicotinic cholinergic receptors. Gen Pharmacol 14:321–325

    Article  CAS  PubMed  Google Scholar 

  • Wheeler JW, Olubajo O, Storm CB (1981) Anabaseine: venom alkaloid of aphaenogaster ants. Science 211:1051–1052

    Google Scholar 

  • Wonnacott S, Irons J, Rapier C, Thorne B, Lunt GG (1989) Presynaptic modulation of transmitter release by nicotinic receptors. Prog Brain Res 79:157–163

    CAS  PubMed  Google Scholar 

  • Woodruff-Pak DS (2003) Mecamylamine reversal by nicotine and by a partial alpha7 nicotinic acetylcholine receptor agonist (GTS-21) in rabbits tested with delay eyeblink classical conditioning. Behav Brain Res 143:159–167

    Article  CAS  PubMed  Google Scholar 

  • Woodruff-Pak DS, Li Y-T, Kem WR (1994) A nicotinic agonist (GTS-21), eyeblink classical conditioning, and nicotinic receptor binding in rabbit brain. Brain Res 645:309–317

    CAS  PubMed  Google Scholar 

  • Xu J, Pato MT, Dalla Torre C, Medeiros H, Carvalho C, Basile VS, Bauer A, Dourado A, Valente J, Soares MJ, Macedo AA, Coelho I, Ferreira CP, Azevedo MH, Macciardi F, Kennedy JL, Pato CN (2001) Evidence of linkage disequilibrium between the alpha 7-nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. Am J Med Genet 105:669–674

    CAS  PubMed  Google Scholar 

  • Yang YK, Nelson L, Kamaraju L, Wilson W, McEvoy JP (2002) Nicotine decreases bradykinesia-rigidity in haloperidol-treated patients with schizophrenia. Neuropsychopharmacology 27:684–686

    CAS  PubMed  Google Scholar 

  • Yee CM, Nuechterlein KH, Morris SE, White PM (1998) P50 Suppression in recent-onset schizophrenia: clinical correlates and risperidone effects. J Abnorm Psychol 107:691–698

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the VA Medical Research Service, USPHS MH-61412, NARSAD, the Stanley Foundation, and the Institute for Children’s Mental Disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura F. Martin.

Additional information

Dr. Martin has nothing to disclose. Dr. Kem holds a patent with the University of Florida on anabaseine-based medicinal compounds. Dr. Freedman has a pending patent application with the VA Medical Research Service on the genomic structure of CHRNA7. He has served as a consultant to Janssen Research Foundation, Abbott Laboratories, and Pharmacia-Upjohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, L.F., Kem, W.R. & Freedman, R. Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology 174, 54–64 (2004). https://doi.org/10.1007/s00213-003-1750-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1750-1

Keywords

Navigation