Skip to main content
Log in

Behavioral effects of urotensin-II centrally administered in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Urotensin-II (U-II) receptors are widely distributed in the central nervous system. Intracerebroventricular (i.c.v.) injection of U-II causes hypertension and bradycardia and stimulates prolactin and thyrotropin secretion. However, the behavioral effects of centrally administered U-II have received little attention. In the present study, we tested the effects of i.c.v. injections of U-II on behavioral, metabolic, and endocrine responses in mice. Administration of graded doses of U-II (1–10,000 ng/mouse) provoked: (1) a dose-dependent reduction in the number of head dips in the hole-board test; (2) a dose-dependent reduction in the number of entries in the white chamber in the black-and-white compartment test, and in the number of entries in the central platform and open arms in the plus-maze test; and (3) a dose-dependent increase in the duration of immobility in the forced-swimming test and tail suspension test. Intracerebroventricular injection of U-II also caused an increase in: food intake at doses of 100 and 1,000 ng/mouse, water intake at doses of 100–10,000 ng/mouse, and horizontal locomotion activity at a dose of 10,000 ng/mouse. Whatever was the dose, the central administration of U-II had no effect on body temperature, nociception, apomorphine-induced penile erection and climbing behavior, and stress-induced plasma corticosterone level. Taken together, the present study demonstrates that the central injection of U-II at doses of 1–10,000 ng/mouse induces anxiogenic- and depressant-like effects in mouse. These data suggest that U-II may be involved in some aspects of psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao ZH, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNulty DE, Ellis CE, Elshourbagy NA, Shabon U, Trill JJ, Hay DWP, Ohlstein EH, Bergsma DJ, Douglas SA (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GRP14. Nature 401:282–286

    Article  PubMed  CAS  Google Scholar 

  • Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1–12

    Article  PubMed  CAS  Google Scholar 

  • Barden N, Reul JM, Holsboer F (1995) Do antidepressants stabilize mood through actions on the hypothalamic–pituitary–adrenocortical system? Trends Neurosci 18:6–11

    Article  PubMed  CAS  Google Scholar 

  • Bern HA, Pearson D, Larson BA, Nishioka RS (1985) Neurohormones from fish tails: the caudal neurosecretory system. I “Urophysiology” and the caudal neurosecretory system of fishes. Recent Prog Horm Res 41:533–552

    PubMed  CAS  Google Scholar 

  • Blumstein LK, Crawley JN (1983) Further characterization of a simple, automated exploratory model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 18:37–40

    Article  PubMed  CAS  Google Scholar 

  • Boissier JR, Simon P (1962) La réaction d'exploration chez la souris. Thérapie 17:1225–1232

    PubMed  CAS  Google Scholar 

  • Byrum CE, Ahearn EP, Krishnan RR (1999) A neuroanatomic model for depression. Prog Neuropsychopharmacol Biol Psychiatry 23:175–193

    Article  PubMed  CAS  Google Scholar 

  • Chartrel N, Conlon JM, Collin F, Braun B, Waugh D, Vallarino M, Lahrichi SL, Rivier J, Vaudry H (1996) Urotensin II in the central nervous system of the frog Rana ridibunda: immunohistochemical localization and biochemical characterization. J Comp Neurol 364:324–339

    Article  PubMed  CAS  Google Scholar 

  • Chartrel N, Leprince J, Dujardin C, Chatenet D, Tollemer H, Baroncini M, Balment RJ, Beauvillain JC, Vaudry H (2004) Biochemical characterization and immunohistochemical localization of urotensin II in the human brainstem and spinal cord. J Neurochem 91:110–118

    Article  PubMed  CAS  Google Scholar 

  • Chatenet D, Dubessy C, Leprince J, Boularan C, Carlier L, Segala-Millazo I, Guilhaudis L, Oulyadi H, Davoust D, Scalbert E, Pfeiffer B, Renard P, Tonon MC, Lihrmann I, Pacaud P, Vaudry H (2004) Structure–activity relationships and structural conformation of a novel urotensin II-related peptide. Peptides 25:1819–1830

    Article  PubMed  CAS  Google Scholar 

  • Clark SD, Northacker HP, Wang Z, Saito Y, Leslie FM, Civelli O (2001) The urotensin II receptor is expressed in the cholinergic mesopontine tegmentum of the rat. Brain Res 923:120–127

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM, Tostivint H, Vaudry H (1997) Somatostatin- and urotensin II-related peptides: molecular diversity and evolutionary perspectives. Regul Pept 69:95–103

    Article  PubMed  CAS  Google Scholar 

  • Coulouarn Y, Lihrmann I, Jegou S, Anouar Y, Tostivint H, Beauvillain JC, Conlon JM, Bern HA, Vaudry H (1998) Cloning of the cDNA encoding the urotensin-II precursor in frog and human reveals intense expression of the urotensin-II gene in motoneurons of the spinal cord. Proc Natl Acad Sci U S A 95:15803–15808

    Article  PubMed  CAS  Google Scholar 

  • Coulouarn Y, Jegou S, Tostivint H, Vaudry H, Lihrmann I (1999) Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin-II precursors. FEBS Lett 457:28–32

    Article  PubMed  CAS  Google Scholar 

  • Coulouarn Y, Fernex C, Jégou S, Henderson CE, Vaudry H, Lihrmann I (2001) Specific expression of the urotensin II gene in sacral motoneurons of developing rat spinal cord. Mech Dev 101:187–190

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC (1998) Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 49:341–361

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC, Raichle ME (1992) Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol Bull 28:261–274

    PubMed  CAS  Google Scholar 

  • Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME (1992) A functional anatomical study of unipolar depression. J Neurosci 12:3628–3641

    PubMed  CAS  Google Scholar 

  • Drevets WC, Bogers W, Raichle ME (2002) Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol 12:527–544

    Article  PubMed  CAS  Google Scholar 

  • Dugovic C, Maccari C, Weibel L, Turek W, Van Reeth O (1999) High corticosterone levels in prenatally stressed rats predict persistent paradoxical sleep alterations. J Neurosci 19:8656–8664

    PubMed  CAS  Google Scholar 

  • Dun SL, Brailoiu GC, Yang J, Chang JK, Dun NJ (2001) Urotensin II-immunoreactivity in the brainstem and spinal cord of the rat. Neurosci Lett 305:9–12

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Knapp DJ, Breese GR (1996) Neuroanatomical characterization of Fos induction in rat behavioral methods of anxiety. Brain Res 713:79–91

    Article  PubMed  CAS  Google Scholar 

  • Eddy WB, Leimbach D (1953) Synthetic (II) dithenylbutenyl and dithenylbutylamine. J Pharmacol Exp Ther 107:385–393

    PubMed  CAS  Google Scholar 

  • Elshourbagy NA, Douglas SA, Shabou U, Harrison S, Duddy G, Sechler JL, Ao Z, Maleeff BE, Naselsky D, Disa J, Aiyar NV (2002) Molecular and pharmacological characterization of genes encoding urotensin-II peptides and their cognate G-protein-coupled receptors from the mouse and monkey. Br J Pharmacol 136:9–22

    Article  PubMed  CAS  Google Scholar 

  • Eritja R, Ziehler-Martin PJ, Walker PA, Lee TD, Legesse K, Albericio F, Kaplan BE (1987) On the use of s-t-butylsulphenyl group for protection of cysteine in solid-phase peptide synthesis using fmoc-amino acids. Tetrahedron 12:2675–2680

    Article  Google Scholar 

  • File SE, Wardil AG (1975) Validity of head-dipping as a measure of exploration in a modified hole board. Psychopharmacology 44:53–59

    Article  CAS  Google Scholar 

  • Flohr S, Kurz M, Kostenis E, Brkovich A, Fournier A, Klabunde T (2002) Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure–activity relationships and nuclear magnetic resonance on urotensin II. J Med Chem 45:1799–1805

    Article  PubMed  CAS  Google Scholar 

  • Gartlon J, Parker F, David C, Harrison DC, Douglas SA, Ashmeade TE, Riley GJ, Hugues ZA, Taylor SG, Munton RP, Hagan JJ, Hunter JA, Jones DNC (2001) Central effects of urotensin-II following ICV administration in rats. Psychopharmacology 155:426–433

    Article  PubMed  CAS  Google Scholar 

  • Guelfi JD (1993) Comorbidity of anxiety–depression and its treatment. Encéphale 2:397–404

    Google Scholar 

  • Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol 12:12–15

    CAS  Google Scholar 

  • Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    Article  PubMed  CAS  Google Scholar 

  • Kinney WA, Almond HR, Qi J, Smith CE, Santulli RJ, de Garavilla L, Andrade-Gordon P, Cho DS, Everson AM, Feinstein MA, Leung PA, Maryanoff BE (2002) Structure–function analysis of urotensin II and its use in the construction of a ligand–receptor working model. Angew Chem Int Ed Engl 41:2940–2944

    Article  PubMed  CAS  Google Scholar 

  • Klein DF (1993) Mixed anxiety depression. For and against. Encéphale 3:493–495

    Google Scholar 

  • Koster R, Andreson M, Debeer E (1959) Acetic acid for analgesic screening. Fed Proc 18:412–415

    Google Scholar 

  • Labarrère P, Chatenet D, Leprince J, Marionneau C, Loirand G, Tonon MC, Dubessy C, Scalbert E, Pfeiffer B, Renard P, Calas B, Pacaud P, Vaudry H (2003) Structure–activity relationships of human urotensin II and related analogues on rat aorta ring contraction. J Enzyme Inhib Med Chem 18:77–88

    Article  PubMed  Google Scholar 

  • Landgraf R, Wigger A, Holsboer F, Neumann D (1999) Hyper-reactive hypothalamo-pituitary–adrenocortical axis in rats bred for high anxiety-related behavior. J Neuroendocrinol 11:405–407

    Article  PubMed  CAS  Google Scholar 

  • Le Cudennec C, Naudin B, Do Rego JC, Costentin J (2002) Nociceptin/orphanin FQ and related peptides reduce the increase in plasma corticosterone elicited in mice by an intracerebroventricular injection. Life Sci 72:163–171

    Article  PubMed  Google Scholar 

  • Lehmann A (1974) Atlas stéréotaxique du cerveau de la souris. Edition du Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Le Mevel JC, Olson KR, Conklin D, Waugh D, Smith DD, Vaudry H, Conlon JM (1996) Cardiovascular actions of trout urotensin II in the conscious trout, Oncorhynchus mykiss. Am J Physiol 271:1335–1343

    Google Scholar 

  • Lin Y, Tsuchihashi T, Matsumura K, Abe I, Lida M (2003) Central cardiovascular action of urotensin II in conscious rats. J Hypertens 21:159–165

    Article  PubMed  CAS  Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92:180–185

    PubMed  CAS  Google Scholar 

  • Liu QY, Pong SS, Zeng ZZ, Zhang Q, Howard AD, Williams DL, Dividoff M, Wang RP, Austin CP, McDonald TP, Bai C, George SR, Evans JF, Caskey CT (1999) Identification of urotensin II as the endogenous ligand for the orphan G-protein-coupled receptor GPR14. Biochem Biophys Res Commun 266:174–178

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Zou CJ, Huang DW, Tang CS (2002) Cardiovascular effects of urotensin II in different brain areas. Peptides 23:1631–1635

    Article  PubMed  CAS  Google Scholar 

  • Maguire JJ, Kuc RE, Davenport AP (2000) Orphan–receptor ligand human urotensin II: receptor localization in human tissues and comparison of vasoconstrictor responses with endothelin-1. Br J Pharmacol 131:441–446

    Article  PubMed  CAS  Google Scholar 

  • Marchese A, Heiber M, Nguyen T, Heng HH, Saldivia VR, Cheng R, Murphy PM, Tsui LC, Shi X, Gregor P, George SR, O'Dowd BF, Docherty JM (1995) Cloning and chromosomal mapping of three novel genes, GPR9, GPR10 and GPR14, encoding receptors related to interleukin 8, neuropeptide Y, and somatostatin receptors. Genomics 29:335–344

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto Y, Abe M, Watanabe T, Adachi Y, Yano T, Takahashi H, Sugo T, Mori M, Kitada C, Kurokawa T, Fujino M (2004) Intracerebroventricular administration of urotensin II promotes anxiogenic-like behaviors in rodents. Neurosci Lett 358:99–102

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Shichiri M, Imai T, Iwashina M, Tanaka H, Takasu N, Hirita Y (2001) Co-expression of urotensin-II and its receptor (GPR14) in human cardiovascular and renal tissue. J Hypertens 19:2185–2190

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Sugo T, Abe M, Shimomura Y, Kurihara M, Kitada C, Kikuchi K, Shintani Y, Kurokawa T, Onda H, Nishimura O, Fujino M (1999) Urotensin II is the endogenous ligand of G-protein-coupled orphan receptor, SENR (GPR14). Biochem Biophys Res Commun 265:123–129

    Article  PubMed  CAS  Google Scholar 

  • Nothacker HP, Wang Z, McNeill AM, Saito Y, Merten S, O'Dowd B, Duckles SP, Civelli O (1999) Identification of the natural ligand of an orphan G-protein-coupled receptor involved in the regulation of vasoconstriction. Nat Cell Biol 1:383–385

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ, Nemeroff CB (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 43:425–473

    PubMed  CAS  Google Scholar 

  • Pearson D, Shively JE, Clark BR, Geschwind II, Barkley M, Nishioka RS, Bern HA (1980) Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of fishes. Proc Natl Acad Sci U S A 77:5021–5024

    Article  PubMed  CAS  Google Scholar 

  • Pelletier G, Lihrmann I, Vaudry H (2002) Role of androgens in the regulation of urotensin II precursor mRNA expression in the rat brainstem and spinal cord. Neuroscience 115:525–532

    Article  PubMed  CAS  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  • Rampin O, Jérôme N, Suaudeau C (2003) Proerectile effects of apomorphine in mice. Life Sci 72:2329–2336

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Haller J, Holmes A, Halasz J, Walton TJ, Brain PF (1999) Corticosterone response to the plus-maze: high correlation with risk assessment in rats and mice. Physiol Behav 68:47–53

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez Echandia EL, Broitman ST, Foscolo MR (1987) Effects of the chronic ingestion of chlomipramine and desipramine on the hole board response to acute stresses in male rats. Pharmacol Biochem Behav 26:207–210

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seely RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    PubMed  CAS  Google Scholar 

  • Semba J, Takahashi R (1988) Effect of monoamine precursors on the forced-swimming test in mice. Psychopharmacology 95:222–225

    Article  PubMed  CAS  Google Scholar 

  • Sheline YI (2000) 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry 48:791–800

    Article  PubMed  CAS  Google Scholar 

  • Simon P, Charpentier S, Costentin J (1991) An automated method for the assessment of spontaneous and stereotyped climbing behavior in mice. Effects of the selective D1 and D2 dopamine receptor agonists SKF 38393 and RU 24926 and their association. Methods Find Exp Clin Pharmacol 13:99–104

    PubMed  CAS  Google Scholar 

  • Soubrié P, Chermat R, Poncelet M, Simon P (1978) Models of inhibition in animal behavior. Encéphale 4:503–511

    PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Mico JA, Lenegre A, Steru M, Simon P, Porsolt RD (1987) The automated suspension test: a computerized device which differentiates psychotropic drugs. Prog Neuropsychopharmacol Biol Psychiatry 11:659–671

    Article  PubMed  CAS  Google Scholar 

  • Sugo T, Murakani Y, Shimomura Y, Harade M, Abe M, Ishibashi Y, Kitada C, Miyajima N, Suzuki N, Mori M, Fujino M (2003) Identification of urotensin II-related peptide as the rat brain. Biochem Biophys Res Commun 310:860–868

    Article  PubMed  CAS  Google Scholar 

  • Sunal R, Gümüsel B, Kayaalp SO (1994) Effect of changes in swimming area on results of behavioral despair test. Pharmacol Biochem Behav 49:891–896

    Article  PubMed  CAS  Google Scholar 

  • Takeda H, Tsuji M, Matsumiya T (1998) Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur J Pharmacol 350:21–29

    Article  PubMed  CAS  Google Scholar 

  • Tal Ammar DA, Karpuj M, Krizhanovsky V, Naim M, Thompson DA (1995) A novel putative neuropeptide receptor expressed in neural tissue, including sensory epithelia. Biochem Biophys Res Commun 209:752–759

    Article  PubMed  Google Scholar 

  • Totsune K, Takahashi K, Arihara Z, Sone M, Satoh F, Ito S, Hironobu S, Murakami O (2001) Role of urotensin II in patients on dialysis. Lancet 358:810–811

    Article  PubMed  CAS  Google Scholar 

  • Watson AMD, Lambert GW, Smith KJ, May CN (2003) Urotensin II acts centrally to increase epinephrine and ACTH release and causes potent ionotropic and chronotropic actions. Hypertension 42:373–379

    Article  PubMed  CAS  Google Scholar 

  • Woods SC, Seely RJ (2000) Adiposity signals and the control of energy homeostasis. Nutrition 16:894–902

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Costentin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do-Rego, JC., Chatenet, D., Orta, MH. et al. Behavioral effects of urotensin-II centrally administered in mice. Psychopharmacology 183, 103–117 (2005). https://doi.org/10.1007/s00213-005-0140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0140-2

Keywords

Navigation