Skip to main content

Advertisement

Log in

Memory and psychostimulants: modulation of Pavlovian fear conditioning by amphetamine in C57BL/6 mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

With the use of prescription stimulants on the rise, it is important to examine the cognitive effects of low and moderate doses of stimulants rather than only those typical of addicts.

Materials and methods

The present study examined the effects a range of doses (0.005–8 mg/kg) of d-amphetamine sulfate on cued and contextual Pavlovian fear conditioning in mice.

Results

In agreement with previous research, subjects administered with a moderately high dose of amphetamine (8 mg/kg) pre-training, typical of what addicts might take, displayed impaired conditioned freezing when tested off-drug. Alternately, subjects injected with a very low dose of amphetamine (0.005, 0.025, or 0.05 mg/kg) pre-training, similar to the therapeutic doses for attention deficit hyperactivity disorder, displayed enhanced memory when tested off-drug. A control study showed that these effects were not due to state-dependent learning.

Conclusions

Thus, dose is a critical determinant of the cognitive effects of psychostimulants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmann PA, Theye FW, Berg R, Linquist AJ, Van Erem AJ, Campbell LR (2001) Placebo-controlled evaluation of amphetamine mixture-dextroamphetamine salts and amphetamine salts (Adderall): efficacy rate and side effects. Pediatrics 107:E10

    Article  PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Maren S, Fanselow MS (1999) Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci 19:1106–1114

    PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Josselyn SA, Frankland PW, Silva AJ (2000) Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice. Learn Mem 7:58–72

    Article  PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Gale GD, Fanselow MS (2001) Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11:8–17

    Article  PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    Article  PubMed  CAS  Google Scholar 

  • Barad M (2006) Is extinction of fear erasure or inhibition? Why both, of course. Learn Mem 13:108–109

    Article  PubMed  Google Scholar 

  • Barch DM, Carter CS (2005) Amphetamine improves cognitive function in medicated individuals with schizophrenia and in healthy volunteers. Schizophr Res 77:43–58

    Article  PubMed  Google Scholar 

  • Borowski TB, Kokkinidis L (1998) The effects of cocaine, amphetamine, and the dopamine D1 receptor agonist SKF 38393 on fear extinction as measured with potentiated startle: implications for psychomotor stimulant psychosis. Behav Neurosci 112:952–965

    Article  PubMed  CAS  Google Scholar 

  • Bouton ME, Kenney FA, Rosengard C (1990) State-dependent fear extinction with two benzodiazepine tranquilizers. Behav Neurosci 104:44–55

    Article  PubMed  CAS  Google Scholar 

  • Briand LA, Robinson TE, Maren S (2005) Enhancement of auditory fear conditioning after housing in a complex environment is attenuated by prior treatment with amphetamine. Learn Mem 12:553–556

    Article  PubMed  Google Scholar 

  • Butcher J (2003) Cognitive enhancement raises ethical concerns. Academics urge pre-emptive debate on neurotechnologies. Lancet 362:132–133

    Article  PubMed  Google Scholar 

  • Caldwell JA, Caldwell JL, Crowley JS, Jones HD (1995) Sustaining helicopter pilot performance with Dexedrine during periods of sleep deprivation. Aviat Space Environ Med 66:930–937

    PubMed  CAS  Google Scholar 

  • Cornum K, Cornum R, Storm W (1995) Use of psychostimulants in extended flight operations: a Desert Shield experience Aerospace Medical Panel Symposium (Advisory Group for Aerospace Research and Development Conference Proceedings 579, Neurological Limitations of Aircraft Operations: Human Performance Implications). Koln, Germany, pp 371–374

    Google Scholar 

  • Cornum KG (1994) Extended air combat operations: F-15s over Iraq. Aerospace Medical Association 65th Annual Scientific Meeting. Aerospace Medical Association, Washington, p A49

    Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    Article  CAS  Google Scholar 

  • Ellinwood EH, King GR, Lee TH (1998) Chronic amphetamine use and abuse. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. CD Rom Version. 4th edn. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  • Faleiro LJ, Jones S, Kauer JA (2004) Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology 29:2115–2125

    Article  PubMed  CAS  Google Scholar 

  • Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci 15:177–182

    PubMed  CAS  Google Scholar 

  • Fanselow MS (1986) Associative vs. topographical accounts of the immediate shock freezing deficit in rats: implications for the response selection rules governing species specific defensive reactions. Learning & Motivation 17:16–39

    Article  Google Scholar 

  • Fanselow MS, Gale GD (2003) The amygdala, fear, and memory. Ann NY Acad Sci 985:125–134

    Article  PubMed  Google Scholar 

  • Fanselow MS, Poulos AM (2005) The neuroscience of mammalian associative learning. Annu Rev Psychol 56:207–234

    Article  PubMed  Google Scholar 

  • Gold PE, Delanoy RL, Merrin J (1984) Modulation of long-term potentiation by peripherally administered amphetamine and epinephrine. Brain Res 305:103–107

    Article  PubMed  CAS  Google Scholar 

  • Harper DN, Wisnewski R, Hunt M, Schenk S (2005) (+/−)3,4-methylenedioxymethamphetamine, d-amphetamine, and cocaine impair delayed matching-to-sample performance by an increase in susceptibility to proactive interference. Behav Neurosci 119:455–463

    Article  PubMed  CAS  Google Scholar 

  • Harris D, Batki SL (2000) Stimulant psychosis: symptom profile and acute clinical course. Am J Addict 9:28–37

    Article  PubMed  CAS  Google Scholar 

  • Kessal K, Chessel A, Spennato G, Garcia R (2005) Ketamine and amphetamine both enhance synaptic transmission in the amygdala-nucleus accumbens pathway but with different time-courses. Synapse 57:61–65

    Article  PubMed  CAS  Google Scholar 

  • Kokkinidis L (1983) The effects of chronic amphetamine administration on the acquisition and extinction of an active and passive avoidance response in mice. Pharmacol Biochem Behav 19:593–598

    Article  PubMed  CAS  Google Scholar 

  • Leonard BE, McCartan D, White J, King DJ (2004) Methylphenidate: a review of its neuropharmacological, neuropsychological and adverse clinical effects. Hum Psychopharmacol 19:151–180

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Kauer JA (2004) Repeated exposure to amphetamine disrupts dopaminergic modulation of excitatory synaptic plasticity and neurotransmission in nucleus accumbens. Synapse 51:1–10

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist T (2005) Cognitive consequences of cannabis use: comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions. Pharmacol Biochem Behav 81:319–330

    Article  PubMed  CAS  Google Scholar 

  • Maren S, Anagnostaras S, Fanselow M (1998) The startled seahorse: is the hippocampus necessary for contextual fear conditioning? Trends Cogn Sci 2:39–42

    Article  Google Scholar 

  • Markham CM, Yang M, Blanchard RJ, Blanchard DC (2006) Effects of d-amphetamine on defensive behaviors related to fear and anxiety. Pharmacol Biochem Behav 83:490–499

    Article  PubMed  CAS  Google Scholar 

  • Martinez JL Jr, Jensen RA, Messing RB, Vasquez BJ, Soumireu-Mourat B, Geddes D, Liang KC, McGaugh JL (1980) Central and peripheral actions of amphetamine on memory storage. Brain Res 182:157–166

    Article  PubMed  CAS  Google Scholar 

  • Marx J (1999) How stimulant drugs may calm hyperactivity. Science 283:306

    Article  PubMed  CAS  Google Scholar 

  • McCabe SE, Knight JR, Teter CJ, Wechsler H (2005) Non-medical use of prescription stimulants among US college students: prevalence and correlates from a national survey. Addiction 100:96–106

    Article  PubMed  Google Scholar 

  • Morimoto K, Otani S, Goddard GV (1987) Effects of acute and long-term treatment with amphetamine on evoked responses and long-term potentiation in the dentate gyrus of anesthetized rats. Brain Res 407:137–143

    Article  PubMed  CAS  Google Scholar 

  • Overton DA (1972) State-dependent learning produced by addicting drugs. In: Fisher C, Freedman AM (eds) Opiate addiction: origins and treatment. Halsted Press Division of Wiley, New York, pp 61–75

    Google Scholar 

  • Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, Schuckit MA (2002) Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology 26:53–63

    Article  PubMed  CAS  Google Scholar 

  • Rogers RD, Robbins TW (2001) Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250–257

    Article  PubMed  CAS  Google Scholar 

  • Silva AJ, Simpson EM, Takahashi JS, Lipp H, Nakanishi S, Wehner JM, Giese KP, Tully T, Abel T, Chapman PF, Fox K, Grant S, Itohara S, Lathe R, Mayford M, McNamara JO, Morris RJ, Picciotto M, Roder M, Shin H, Slesinger PA, Storm DR, Stryker MP, Tonegawa S, Wang Y, Wolfer DP (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19:755–759

    Article  Google Scholar 

  • Simon SL, Domier CP, Sim T, Richardson K, Rawson RA, Ling W (2002) Cognitive performance of current methamphetamine and cocaine abusers. J Addict Dis 21:61–74

    Article  PubMed  Google Scholar 

  • Sun X, Zhao Y, Wolf ME (2005) Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J Neurosci 25:7342–7351

    Article  PubMed  CAS  Google Scholar 

  • Teter CJ, McCabe SE, LaGrange K, Cranford JA, Boyd CJ (2006) Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration. Pharmacotherapy 26:1501–1510

    Article  PubMed  Google Scholar 

  • Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ (2003) Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology (Berl) 165:260–269

    CAS  Google Scholar 

  • Walker-Batson D, Curtis S, Natarajan R, Ford J, Dronkers N, Salmeron E, Lai J, Unwin DH (2001) A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 32:2093–2098

    Article  PubMed  CAS  Google Scholar 

  • White IM, Whitaker C, White W (2006) Amphetamine-induced hyperlocomotion in rats: hippocampal modulation of the nucleus accumbens. Hippocampus 16:596–603

    Article  PubMed  Google Scholar 

  • Wood SC, Fay J, Sage JR, Anagnostaras SG (2007) Cocaine and Pavlovian fear conditioning: dose–effect analysis. Behav Brain Res 176:244–250

    Article  PubMed  CAS  Google Scholar 

  • Yates JW, Meij JT, Sullivan JR, Richtand NM, Yu L (2007) Bimodal effect of amphetamine on motor behaviors in C57BL/6 mice. Neurosci Lett 427:66–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jakyong Lee, Angela Smith, and Jason Yeatman for excellent technical assistance; we also thank Tristan Shuman and Jennifer Sage for helpful comments on the manuscript. SCW was supported by an NSF Graduate Research Fellowship. These studies were supported by NIH grant (DA020041) and Hellman Fellowship to SGA. The above experiments comply with the current laws of the United States, the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne C. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, S.C., Anagnostaras, S.G. Memory and psychostimulants: modulation of Pavlovian fear conditioning by amphetamine in C57BL/6 mice. Psychopharmacology 202, 197–206 (2009). https://doi.org/10.1007/s00213-008-1185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1185-9

Keywords

Navigation