Skip to main content
Log in

Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D1, D2, and D3 receptor antagonists

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Low doses of dopamine (DA) antagonists and accumbens DA depletions reduce food-reinforced instrumental behavior but do not impair primary food motivation, causing animals to reallocate behavior away from food-reinforced tasks with high response requirements and select less effortful alternatives. However, it is uncertain if this same pattern of effects would occur if sucrose was used as the reinforcer.

Objectives

These experiments studied the impact of DA depletion and antagonism on performance of an effort-related choice task using sucrose as the reinforcer, as well as sucrose consumption, preference, and taste reactivity tests.

Methods

The effects of DA manipulations were assessed using a task in which rats chose between lever pressing on a fixed ratio 7 schedule for 5.0 % sucrose versus freely consuming a less concentrated solution (0.3 %).

Results

The DA depleting agent tetrabenazine shifted effort-related choice, decreasing lever pressing for 5.0 % sucrose but increasing intake of the concurrently available 0.3 % sucrose. Tetrabenazine did not affect sucrose appetitive taste reactivity, or sucrose consumption or preference, in free consumption tests. The D1 antagonist ecopipam and the D2 antagonist haloperidol also shifted choice behavior at doses that did not alter sucrose consumption or preference. In contrast, sucrose pre-exposure reduced consumption across all conditions. D3 antagonism had no effects.

Conclusions

D1 and D2 receptor blockade and DA depletion reduce the tendency to work for sucrose under conditions that leave fundamental aspects of sucrose motivation (intake, preference, hedonic reactivity) intact. These findings have implications for studies employing sucrose intake or preference in animal models of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alburges ME, Hunt ME, McQuade RD, Wamsley JK (1992) D1-receptor antagonists: comparison of [3H]SCH39166 to [3H]SCH23390. J Chem Neuroanat 5(5):357–366

    Article  CAS  PubMed  Google Scholar 

  • Audinot V, Newman-Tancredi A, Gobert A, Rivet JM, Brocco M, Lejeune F, Gluck L, Desposte I, Bervoets K, Dekeyne A, Millan MJ (1998) A comparative in vitro and in vivo pharmacological characterization of the novel dopamine D3 receptor antagonists (+)-S 14297, nafadotride, GR 103,691 and U 99194. J Pharmacol Exp Ther 287(1):187–197

    CAS  PubMed  Google Scholar 

  • Bai Y, Li Y, Lv Y, Liu Z, Zheng X (2014) Complex motivated behaviors for natural rewards following a binge-like regimen of morphine administration: mixed phenotypes of anhedonia and craving after short-term withdrawal. Front Behav Neurosci 8:23

    PubMed Central  PubMed  Google Scholar 

  • Baldo BA, Sadeghian K, Basso AM, Kelley AE (2002) Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 137(1–2):165–177

    Article  CAS  PubMed  Google Scholar 

  • Barbano MF, Cador M (2006) Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacology 31(7):1371–1381

    Article  CAS  PubMed  Google Scholar 

  • Barbano MF, Cador M (2007) Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology (Berl) 191(3):497–506

    Article  CAS  Google Scholar 

  • Barch DM, Treadway MT, Schoen N (2014) Effort, anhedonia, and function in schizophrenia: reduced effort allocation predicts amotivation and functional impairment. J Abnorm Psychol 123(2):387–397

    Article  PubMed Central  PubMed  Google Scholar 

  • Bardgett ME, Depenbrock M, Downs N, Points M, Green L (2009) Dopamine modulates effort-based decision making in rats. Behav Neurosci 123(2):242–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24(2):173–198

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC (2007) The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl) 191(3):391–431

    Article  CAS  Google Scholar 

  • Berridge KC, Kringelbach ML (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl) 199(3):457–480

    Article  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26(9):507-513. Review. Erratum in. Trends Neurosci 26(11):581

    Article  CAS  Google Scholar 

  • Cagniard B, Balsam PD, Brunner D, Zhuang X (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31(7):1362–1370

    Article  CAS  PubMed  Google Scholar 

  • Cannon CM, Bseikri MR (2004) Is dopamine required for natural reward? Physiol Behav 81(5):741–748

    Article  CAS  PubMed  Google Scholar 

  • Cannon CM, Palmiter RD (2003) Reward without dopamine. J Neurosci 23(34):10827–10831

    CAS  PubMed  Google Scholar 

  • Clifford JJ, Waddington JL (1998) Heterogeneity of behavioural profile between three new putative selective D3 dopamine receptor antagonists using an ethologically based approach. Psychopharmacology (Berl) 136(3):284–290

    Article  CAS  Google Scholar 

  • Cocker PJ, Hosking JG, Benoit J, Winstanley CA (2012) Sensitivity to cognitive effort mediates psychostimulant effects on a novel rodent cost/benefit decision-making task. Neuropsychopharmacol 37:1825–1837

    Article  CAS  Google Scholar 

  • Cofer CN, Appley MH (1964) Motivation: Theory and Research. John Wiley and Sons, New York

    Google Scholar 

  • Cousins MS, Wei W, Salamone JD (1994) Pharmacological characterization of performance on a concurrent lever pressing/feeding choice procedure: effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology (Berl) 116(4):529–537

    Article  CAS  Google Scholar 

  • Das S, Fowler SC (1996) Similarity of clozapine’s and olanzapine’s acute effects on rats’ lapping behavior. Psychopharmacology (Berl) 123(4):374–378

    Article  CAS  Google Scholar 

  • Diaz MR, Chappell AM, Christian DT, Anderson NJ, McCool BA (2011) Dopamine D3-like receptors modulate anxiety-like behavior and regulate GABAergic transmission in the rat lateral/basolateral amygdala. Neuropsychopharmacology 36(5):1090–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fasano A, Bentivoglio AR (2009) Tetrabenazine. Expert Opin Pharmacother 10(17):2883–2896

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, St Onge JR, Ghods-Sharifi S, Winstanley CA (2008) Cortico-limbic-striatal circuits subserving different forms of cost-benefit decision making. Cogn Affect Behav Neurosci 8(4):375–389

    Article  PubMed  Google Scholar 

  • Fowler SC, Mortell C (1992) Low doses of haloperidol interfere with rat tongue extensions during licking: a quantitative analysis. Behav Neurosci 106(2):386–395

    Article  CAS  PubMed  Google Scholar 

  • Gerlach M, Bartoszyk GD, Riederer P, Dean O, van den Buuse M (2011) Role of dopamine D3 and serotonin 5-HT 1A receptors in L:-DOPA-induced dyskinesias and effects of sarizotan in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. J Neural Transm 118(12):1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Gold JM, Strauss GP, Waltz JA, Robinson BM, Brown JK, Frank MJ (2013) Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biol Psychiatry 74(2):130–136

    Article  PubMed Central  PubMed  Google Scholar 

  • Guay DR (2010) Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinetic movement disorders. Am J Geriatr Pharmacother 8(4):331–373

    Article  CAS  PubMed  Google Scholar 

  • Higley AE, Kiefer SW, Li X, Gaál J, Xi ZX, Gardner EL (2011) Dopamine D(3) receptor antagonist SB-277011A inhibits methamphetamine self-administration and methamphetamine-induced reinstatement of drug-seeking in rats. Eur J Pharmacol 659(2–3):187–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsiao S, Chen BH (1995) Complex response competition and dopamine blocking: choosing of high cost sucrose solution versus low cost water in rats. Chin J Physiol 38(2):99–109

    CAS  PubMed  Google Scholar 

  • Hurley LL, Akinfiresoye L, Kalejaiye O, Tizabi Y (2014) Antidepressant effects of resveratrol in an animal model of depression. Behav Brain Res 268:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav Neurosci 110(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Keppel G (1991) Design and Analysis: a researcher’s handbook. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Koch M, Schmid A, Schnitzler HU (2000) Role of nucleus accumbens dopamine D1 and D2 receptors in instrumental and Pavlovian paradigms of conditioned reward. Psychopharmacology (Berl) 152(1):67–73

    Article  CAS  Google Scholar 

  • Koob GF, Riley SJ, Smith SC, Robbins TW (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol 92(5):917–927

    Article  CAS  PubMed  Google Scholar 

  • Levine AS, Kotz CM, Gosnell BA (2003) Sugars: hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr 78(4):834S–842S

    CAS  PubMed  Google Scholar 

  • Mai B, Sommer S, Hauber W (2012) Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens. Cogn Affect Behav Neurosci 12:74–84

    Article  PubMed  Google Scholar 

  • Markou A, Salamone JD, Bussey TJ, Mar AC, Brunner D, Gilmour G, Balsam P (2013) Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia. Neurosci Biobehav Rev 37(9):2149–2165

    Article  PubMed  Google Scholar 

  • Martinez-Hernandez J, Lanuza E, Martínez-García F (2012) Lesions of the dopaminergic innervation of the nucleus accumbens medial shell delay the generation of preference for sucrose, but not of sexual pheromones. Behav Brain Res 226(2):538–547

    Article  CAS  PubMed  Google Scholar 

  • Mott AM, Nunes EJ, Collins LE, Port RG, Sink KS, Hockemeyer J, Müller CE, Salamone JD (2009) The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology (Berl) 204(1):103–112

    Article  CAS  Google Scholar 

  • Muscat R, Willner P (1989) Effects of dopamine receptor antagonists on sucrose consumption and preference. Psychopharmacology (Berl) 99(1):98–102

    Article  CAS  Google Scholar 

  • Nowend KL, Arizzi M, Carlson BB, Salamone JD (2001) D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 69(3–4):373–382

    Article  CAS  PubMed  Google Scholar 

  • Nunes EJ, Randall PA, Santerre JL, Given AB, Sager TN, Correa M, Salamone JD (2010) Differential effects of selective adenosine antagonists on the effort-related impairments induced by dopamine D1 and D2 antagonism. Neuroscience 170(1):268–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nunes EJ, Randall PA, Hart EE, Freeland C, Yohn SE, Baqi Y, Müller CE, López-Cruz L, Correa M, Salamone JD (2013) Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: implications for animal models of the motivational symptoms of depression. J Neurosci 33(49):19120–19130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orsetti M, Canonico PL, Dellarole A, Colella L, Di Brisco F, Ghi P (2007) Quetiapine prevents anhedonia induced by acute or chronic stress. Neuropsychopharmacology 32(8):1783–1790

    Article  CAS  PubMed  Google Scholar 

  • Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M (2012) Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology 62(5–6):2068–2077

    Article  CAS  PubMed  Google Scholar 

  • Peciña S, Berridge KC, Parker LA (1997) Pimozide does not shift palatability: separation of anhedonia from sensorimotor suppression by taste reactivity. Pharmacol Biochem Behav 58(3):801–811

    Article  PubMed  Google Scholar 

  • Pettibone DJ, Totaro JA, Pflueger AB (1984) Tetrabenazine-induced depletion of brain monoamines: characterization and interaction with selected antidepressants. Eur J Pharmacol 102(3–4):425–430

    Article  CAS  PubMed  Google Scholar 

  • Phillips PE, Walton ME, Jhou TC (2007) Calculating utility: preclinical evidence for cost-benefit analysis by mesolimbic dopamine. Psychopharmacology (Berl) 191(3):483–495

    Article  CAS  Google Scholar 

  • Pizzagalli DA (2014) Depression, stress, and anhedonia: toward a synthesis and integrated model. Annu Rev Clin Psychol 10:393–423

    Article  PubMed Central  PubMed  Google Scholar 

  • Podurgiel SJ, Nunes EJ, Yohn SE, Barber J, Thompson A, Milligan M, Lee CA, López-Cruz L, Pardo M, Valverde O, Lendent C, Baqi Y, Müller CE, Correa M, Salamone JD (2013) The vesicular monoamine transporter (VMAT-2) inhibitor tetrabenazine induces tremulous jaw movements in rodents: implications for pharmacological models of parkinsonian tremor. Neuroscience. 250:507–519

  • Randall PA, Pardo M, Nunes EJ, López Cruz L, Vemuri VK, Makriyannis A, Baqi Y, Müller CE, Correa M, Salamone JD (2012) Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences. PLoS One 7(10):e47934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Randall PA, Lee CA, Nunes EJ, Yohn SE, Nowak V, Khan B, Shah P, Vemuri K, Makriyannis A, Baqi Y, Müller CE, Correa M, Salamone JD (2014) The VMAT-2 inhibitor tetrabenazine affects effort-related decision making in a progressive ratio/chow feeding choice task: reversal with antidepressant drugs. PLoS ONE 9(6):e99320

    Article  PubMed Central  PubMed  Google Scholar 

  • Reynolds SM, Berridge KC (2002) Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste "liking"/"disliking" reactions, place preference/avoidance, and fear. J Neurosci 22:7308–7320

    CAS  PubMed  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24(6):1265–1271

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Rolls BJ, Kelly PH, Shaw SG, Wood RJ, Dale R (1974) The relative attenuation of self-stimulation, eating and drinking produced by dopamine-receptor blockade. Psychopharmacologia 38(3):219–230

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD (1988) Dopaminergic involvement in activational aspects of motivation: effects of haloperidol on schedule induced activity, feeding and foraging in rats. Psychobiology 16:196–206

    CAS  Google Scholar 

  • Salamone JD (1992) Complex motor and sensorimotor functions of striatal and accumbens dopamine: involvement in instrumental behavior processes. Psychopharmacology 107:160–174

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137(1–2):3–25

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76(3):470–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology (Berl) 104(4):515–521

    Article  CAS  Google Scholar 

  • Salamone JD, Mahan K, Rogers S (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44(3):605–610

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65(2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21(3):341–359

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Arizzi M, Sandoval MD, Cervone KM, Aberman JE (2002) Dopamine antagonists alter response allocation but do not suppress appetite for food in rats: contrast between the effects of SKF 83566, raclopride and fenfluramine on a concurrent choice task. Psychopharmacology (Berl) 160(4):371–380

    Article  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote S, Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5(1):34–41

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM, Farrar AM (2006) Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: implications of understanding anergia and psychomotor slowing in depression. Curr Psychiat Rev 2(2):267–280

    Article  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl) 191(3):461–482

    Article  CAS  Google Scholar 

  • Salamone JD, Correa M, Farrar AM, Nunes EJ, Pardo M (2009) Dopamine, behavioral economics, and effort. Front Behav Neurosci 3:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneider JS, Pope A, Simpson K, Taggart J, Smith MG, DiStefano L (1992) Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science 256(5058):843–846

    Article  CAS  PubMed  Google Scholar 

  • Sclafani A, Nissenbaum JW (1987) Taste preference thresholds for Polycose, maltose, and sucrose in rats. Neurosci Biobehav Rev 11(2):181–185

    Article  CAS  PubMed  Google Scholar 

  • Sink KS, Vemuri VK, Olszewska T, Makriyannis A, Salamone JD (2008) Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology (Berl) 196(4):565–574

    Article  CAS  Google Scholar 

  • Smith GP (1995) Dopamine and food reward. Progress Psychobiol Physiol Psychol 16:83–144

    Google Scholar 

  • Smith KS, Berridge KC, Aldridge JW (2011) Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A 108(27):E255–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer S, Danysz W, Russ H, Valastro B, Flik G, Hauber W (2014) The dopamine reuptake inhibitor MRZ-9547 increases progressive ratio responding in rats. Int J Neuropsychopharmacol [Epub ahead of print]

  • Song R, Bi GH, Zhang HY, Yang RF, Gardner EL, Li J, Xi ZX (2014) Blockade off D3 receptors by YQA14 inhibits cocaine’s rewarding effects and relapse to drug-seeking behavior in rats. Neuropharmacology 77:398–405

    Article  CAS  PubMed  Google Scholar 

  • Tanra AJ, Kagaya A, Okamoto Y, Muraoka M, Motohashi N, Yamawaki S (1995) TJS-010, a new prescription of oriental medicine, antagonizes tetrabenazine-induced suppression of spontaneous locomotor activity in rats. Prog Neuropsychopharmacol Biol Psychiatry 19(5):963–971

    Article  CAS  PubMed  Google Scholar 

  • Treadway MT, Zald DH (2011) Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 35(3):537–555

    Article  PubMed Central  PubMed  Google Scholar 

  • Treadway MT, Bossaller NA, Shelton RC, Zald DH (2012) Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. J Abnorm Psychol 121(3):553–558

    Article  PubMed Central  PubMed  Google Scholar 

  • Treit D, Berridge KC (1990) A comparison of benzodiazepine, serotonin, and dopamine agents in the taste-reactivity paradigm. Pharmacol Biochem Behav 37(3):451–456

    Article  CAS  PubMed  Google Scholar 

  • Trifilieff P, Feng B, Urizar E, Winiger V, Ward RD, Taylor KM, Martinez D, Moore H, Balsam PD, Simpson EH, Javitch JA (2013) Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry 18(9):1025–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:95–122

    Article  CAS  PubMed  Google Scholar 

  • Vezina P, Lorrain DS, Arnold GM, Austin JD, Suto N (2002) Sensitization of midbrain dopamine neuron reactivity promotes the pursuit of amphetamine. J Neurosci 22(11):4654–4662

    CAS  PubMed  Google Scholar 

  • Wakabayashi KT, Fields HL, Nicola SM (2004) Dissociation of the role of nucleus accumbens dopamine in responding to reward-predictive cues and waiting for reward. Behav Brain Res 154(1):19–30

    Article  CAS  PubMed  Google Scholar 

  • Ward RD, Simpson EH, Richards VL, Deo G, Taylor K, Glendinning JI, Kandel ER, Balsam PD (2012) Dissociation of hedonic reaction to reward and incentive motivation in an animal model of the negative symptoms of schizophrenia. Neuropsychopharmacology 37(7):1699–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westerink BH, Kwint HF, de Vries JB (1997) Eating-induced dopamine release from mesolimbic neurons is mediated by NMDA receptors in the ventral tegmental area: a dual-probe microdialysis study. J Neurochem 69(2):662–668

    Article  CAS  PubMed  Google Scholar 

  • Worden LT, Shahriari M, Farrar AM, Sink KS, Hockemeyer J, Müller CE, Salamone JD (2009) The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology (Berl) 203(3):489–499

    Article  CAS  Google Scholar 

  • Yamamoto T (2003) Brain mechanisms of sweetness and palatability of sugars. Nutr Rev 61:S5–9

    Article  PubMed  Google Scholar 

  • Yohn SE, Thompson C, Randall PA, Lee CA, Müller CE, Baqi Y, Correa M, Salamone JD (2014) The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology (in press)

  • Zheng G, Dwoskin LP, Crooks PA (2006) Vesicular monoamine transporter 2: role as a novel target for drug development. AAPS J 8(4):E682–92

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant to Mercè Correa from Pla Promoció Investigació UJI (P1.1 A 2013-01) and to John D. Salamone from the National Institute of Mental Health (MH078023). Personal grants were awarded to Marta Pardo (Predoc-UJI/ 2007/43), Noemí San Miguel (Predoc-UJI/ 2012/28), and Laura Lopez-Cruz (FPU AP2010-3793, Ministerio de Educación, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercè Correa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardo, M., López-Cruz, L., Miguel, N.S. et al. Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D1, D2, and D3 receptor antagonists. Psychopharmacology 232, 2377–2391 (2015). https://doi.org/10.1007/s00213-015-3872-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-3872-7

Keywords

Navigation