Skip to main content
Log in

Modification of motor cortical excitability by an acetylcholinesterase inhibitor

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Acetylcholine powerfully modulates the excitability of neocortical neurones and networks. This study applied focal transcranial magnetic stimulation (TMS) to eight healthy subjects to test the effects of a single oral dose of 40 mg tacrine, an acetylcholinesterase inhibitor, on motor cortical excitability. It was found that tacrine decreased short-interval intracortical inhibition, and increased intracortical facilitation and short-interval intracortical facilitation. Motor thresholds, motor evoked potential amplitude, cortical silent period (CSP) duration, and measures of spinal and neuromuscular excitability remained unchanged. The effects peaked at 2–6 h and fully reversed after 24 h. All effects can be explained by a reduction of motor cortical GABAergic inhibitory neurotransmission via activation of presynaptic muscarinic M2 receptors, but other more complex mechanisms may also have contributed and are discussed. The findings predict that acetylcholine has the potential to promote plasticity and learning in human motor cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23:120–126

    Article  CAS  PubMed  Google Scholar 

  • Castro-Alamancos MA, Donoghue JP, Connors BW (1995) Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci 15:5324–5333

    CAS  PubMed  Google Scholar 

  • Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH (2003) Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38:819–829

    Article  CAS  PubMed  Google Scholar 

  • Connors BW, Malenka RC, Silva LR (1988) Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor- mediated responses in neocortex of rat and cat. J Physiol (Lond) 406:443–468

    CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000a) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–799

    Article  CAS  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000b) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in human motor cortex. Exp Brain Res 135:455–461

    Article  CAS  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P, Saturno E, Pilato F, Masullo C, Rothwell JC (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Pilato F, Zito G, Dileone M, Nicoletti R, Pasqualetti P, Tonali PA (2003) Ketamine increases motor cortex excitability to transcranial magnetic stimulation. J Physiol 547:485–496

    Article  CAS  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559

    Article  CAS  PubMed  Google Scholar 

  • Fernandez de Sevilla D, Buno W (2003) Presynaptic inhibition of Schaffer collateral synapses by stimulation of hippocampal cholinergic afferent fibres. Eur J Neurosci 17:555–558

    Article  PubMed  Google Scholar 

  • Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248

    Article  CAS  PubMed  Google Scholar 

  • Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495

    Article  CAS  PubMed  Google Scholar 

  • Garvey MA, Ziemann U, Becker DA, Barker CA, Bartko JJ (2001) New graphical method to measure silent periods evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Gu Q (2002) Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111:815–835

    Article  CAS  PubMed  Google Scholar 

  • Hanajima R, Ugawa Y, Terao Y, Sakai K, Furubayashi T, Machii K, Kanazawa I (1998) Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol 509:607–618

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67:1–27

    Article  CAS  PubMed  Google Scholar 

  • Hess G, Aizenman CD, Donoghue JP (1996) Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol 75:1765–1778

    CAS  PubMed  Google Scholar 

  • Hess G, Donoghue JP (1999) Facilitation of long-term potentiation in layer II/III horizontal connections of rat motor cortex following layer I stimulation: route of effect and cholinergic contributions. Exp Brain Res 127:279–290

    Article  CAS  PubMed  Google Scholar 

  • Hess G, Krawczyk R (1996) Cholinergic modulation of synaptic transmission in horizontal connections of rat motor cortex. Acta Neurobiol Exp (Wars) 56:863–872

    CAS  Google Scholar 

  • Hwa GG, Avoli M (1992) Excitatory postsynaptic potentials recorded from regular-spiking cells in layers II/III of rat sensorimotor cortex. J Neurophysiol 67:728–737

    CAS  PubMed  Google Scholar 

  • Ilic TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U (2002) Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol 545.1:153–167

    Article  Google Scholar 

  • Jann MW, Shirley KL, Small GW (2002) Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 41:719–739

    CAS  PubMed  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519

    CAS  Google Scholar 

  • Liepert J, Bar KJ, Meske U, Weiller C (2001a) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112:1436–1441

    Article  CAS  PubMed  Google Scholar 

  • Liepert J, Schardt S, Weiller C (2001b) Orally administered atropine enhances motor cortex excitability: a transcranial magnetic stimulation study in human subjects. Neurosci Lett 300:149–152

    Article  CAS  PubMed  Google Scholar 

  • Lorenzon NM, Foehring RC (1992) Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J Neurophysiol 67:350–363

    CAS  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  CAS  PubMed  Google Scholar 

  • Matsumura M, Sawaguchi T, Kubota K (1992) GABAergic inhibition of neuronal activity in the primate motor and premotor cortex during voluntary movement. J Neurophysiol 68:692–702

    CAS  PubMed  Google Scholar 

  • McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J Physiol 375:169–194

    CAS  PubMed  Google Scholar 

  • McKenna TM, Ashe JH, Hui GK, Weinberger NM (1988) Muscarinic agonists modulate spontaneous and evoked unit discharge in auditory cortex of cat. Synapse 2:54–68

    Article  CAS  PubMed  Google Scholar 

  • Richter M, Schilling T, Muller W (1999) Muscarinic control of intracortical connections to layer II in rat entorhinal cortex slice. Neurosci Lett 273:200–202

    Article  CAS  PubMed  Google Scholar 

  • Rossini PM, Berardelli A, Deuschl G, Hallett M, Maertens de Noordhout AM, Paulus W, Pauri F (1999) Applications of magnetic cortical stimulation. Electroencephalogr Clin Neurophysiol Suppl 52:171–185

    CAS  PubMed  Google Scholar 

  • Rothwell JC (2003) Techniques of transcranial magnetic stimulation. In: Boniface SJ, Ziemann U (eds) Plasticity in the human nervous system. Investigations with transcranial magnetic stimulation. Cambridge University Press, Cambridge, pp 26–61

    Google Scholar 

  • Sato H, Hata Y, Masui H, Tsumoto T (1987) A functional role of cholinergic innervation to neurons in the cat visual cortex. J Neurophysiol 58:765–780

    CAS  PubMed  Google Scholar 

  • Sawaki L, Boroojerdi B, Kaelin-Lang A, Burstein AH, Butefisch CM, Kopylev L, Davis B, Cohen LG (2002) Cholinergic influences on use-dependent plasticity. J Neurophysiol 87:166–171

    CAS  PubMed  Google Scholar 

  • Scanziani M, Gahwiler BH, Thompson SM (1995) Presynaptic inhibition of excitatory synaptic transmission by muscarinic and metabotropic glutamate receptor activation in the hippocampus: are Ca2+ channels involved? Neuropharmacology 34:1549–1557

    Article  CAS  PubMed  Google Scholar 

  • Schwenkreis P, Witscher K, Janssen F, Addo A, Dertwinkel R, Zenz M, Malin J-P, Tegenthoff M (1999) Influence of the N-methyl-d-aspartate antagonist memantine on human motor cortex excitability. Neurosci Lett 270:137–140

    Article  CAS  PubMed  Google Scholar 

  • Schwindt PC, Spain WJ, Foehring RC, Chubb MC, Crill WE (1988) Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J Neurophysiol 59:450–467

    CAS  PubMed  Google Scholar 

  • Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam M-M (1998) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257

    Article  PubMed  Google Scholar 

  • Snape MF, Misra A, Murray TK, De Souza RJ, Williams JL, Cross AJ, Green AR (1999) A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066. Neuropharmacology 38:181–193

    Article  CAS  PubMed  Google Scholar 

  • Stone TW (1972) Cholinergic mechanisms in the rat somatosensory cerebral cortex. J Physiol 225:485–499

    CAS  PubMed  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513

    Article  CAS  PubMed  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol (Lond) 517:591–597

    Article  CAS  Google Scholar 

  • Xiang Z, Huguenard JR, Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U (2002) Assessment of motor cortex and descending motor pathways. In: Brown WF, Bolton CF, Aminoff MJ (eds) Neuromuscular function and disease. Basic, clinical and electrodiagnostic aspects, vol 1. Saunders, Philadelphia, pp 189–221

  • Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996a) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding MC (1996b) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol (Lond) 496:873–881

    CAS  Google Scholar 

  • Ziemann U, Chen R, Cohen LG, Hallett M (1998a) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324

    CAS  PubMed  Google Scholar 

  • Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W (1998b) Demonstration of facilitatory I-wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol (Lond) 511:181–190

    Article  CAS  Google Scholar 

  • Ziemann U, Tergau F, Wischer S, Hildebrandt J, Paulus W (1998c) Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study. Electroencephalogr Clin Neurophysiol 109:321–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.V.I. was a fellow of the Alexander von Humboldt Foundation. The study was supported by Grant ZI 542/2-1 from the German Research Foundation (DFG) to U.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Ziemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korchounov, A., Ilic, T.V., Schwinge, T. et al. Modification of motor cortical excitability by an acetylcholinesterase inhibitor. Exp Brain Res 164, 399–405 (2005). https://doi.org/10.1007/s00221-005-2326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2326-6

Keywords

Navigation