Skip to main content

Advertisement

Log in

Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To test the hypotheses that (1) CYP2D6 genotype is associated with pharmacokinetics of ophthalmic timolol and (2) variation in genotypes of ADRB11-adrenoceptor) and GNAS1 (α-subunit of G-protein) modulate heart rate (HR), and systolic (SAP) and diastolic (DAP) arterial pressure responses to timolol.

Methods

Nineteen glaucoma patients and eighteen healthy volunteers were treated with 0.5% aqueous and 0.1% hydrogel formulations of ophthalmic timolol using a randomised cross-over design. The participants conducted head-up tilt and maximum exercise test at four visits. Plasma concentration of timolol was measured twice for glaucoma patients and ten times for healthy volunteers on each visit. Also, the genotypes for CYP2D6, ADRB1 and GNAS1 were determined.

Results

Among healthy volunteers using aqueous timolol, poor metabolisers (PMs, n=2) of CYP2D6 had higher maximum plasma concentrations (Cmax, values 2.63 and 2.94 ng/ml), longer elimination half-lives ( T1/2, 5.49 and 6.75 h), and higher area-under-curve (AUC, 19.54 and 23.25 ng·h/ml) than intermediate [IMs, n=6, mean±SD 1.73±0.59 ng/ml (not significant), 3.30±0.48 h, 11.32±3.72 ng·h/ml], extensive (EMs, n=8, 1.60±0.72 ng/ml, 3.24±1.24 h, 8.52±6.12 ng·h/ml) and ultra-rapid (UMs, n=2, values 1.23 and 1.67 ng/ml, 2.22 and 2.52 h, 6.16 and 6.94 ng·h/ml) metabolisers. The IMs, EMs and UMs did not differ from each other for any of the kinetic variables. Also, the elevation of HR from rest to maximum level tended to differ between PMs and IMs, and between PMs and UMs. The pharmacokinetics and pharmacodynamics between the CYP2D6 groups did not differ with statistical significance when hydrogel timolol was used. Upon head-up tilt, the Ser49 homozygotes (n=26) had higher SAP (P=0.03) and DAP (P<0.01) than the Gly carriers (n=11). The change in DAP from rest to maximum during exercise was lower (P<0.01) in subjects with CC alleles of GNAS1 (n=13) than those with at least one T allele (n=24).

Conclusion

The CYP2D6 poor metabolisers may be more prone to systemic adverse events with aqueous timolol than extensive metabolisers. Since CYP2D6 genotyping is not routine clinical practice, using 0.1% timolol hydrogel instead of 0.5% aqueous preparation will increase patient safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. al-Sereiti MR, Edeki T, Lledo P, Turner P (1990) The effects of timolol on intraocular pressure and exercise heart rate in poor and extensive debrisoquine metabolizers. Int J Clin Pharmacol Res 10:339–345

    PubMed  CAS  Google Scholar 

  2. Brodde OE (1991) Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    PubMed  CAS  Google Scholar 

  3. Diggory P, Cassels-Brown A, Vail A, Hillman JS (1998) Randomised, controlled trial of spirometric changes in elderly people receiving timolol or betaxolol as initial treatment for glaucoma. Br J Ophthalmol 82:146–149

    Article  PubMed  CAS  Google Scholar 

  4. Edeki TI, He H, Wood AJ (1995) Pharmacogenetic explanation for excessive beta-blockade following timolol eye drops. Potential for oral-ophthalmic drug interaction. JAMA 274:1611–1613

    Article  PubMed  CAS  Google Scholar 

  5. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491

    Article  PubMed  CAS  Google Scholar 

  6. Huupponen R, Kaila T, Lahdes K, Salminen L, Iisalo E (1991) Systemic absorption of ocular timolol in poor and extensive metabolizers of debrisoquine. J Ocul Pharmacol 7:183–187

    PubMed  CAS  Google Scholar 

  7. Jia H, Hingorani AD, Sharma P, Hopper R, Dickerson C, Trutwein D, Lloyd DD, Brown MJ (1999) Association of the G(s)alpha gene with essential hypertension and response to beta-blockade. Hypertension 34:8–14

    PubMed  CAS  Google Scholar 

  8. Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF (2003) Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther 74:44–52

    Article  PubMed  CAS  Google Scholar 

  9. Kaila T, Karhuvaara S, Huupponen R, Iisalo E (1993) The analysis of plasma kinetics and beta-receptor binding and -blocking activity of timolol following its small intravenous dose. Int J Clin Pharmacol Ther Toxicol 31:351–357

    PubMed  CAS  Google Scholar 

  10. Kirchheiner J, Heesch C, Bauer S, Meisel C, Seringer A, Goldammer M, Tzvetkov M, Meineke I, Roots I, Brockmoller J (2004) Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 76:302–312

    Article  PubMed  CAS  Google Scholar 

  11. Koytchev R, Alken RG, Vlahov V, Kirkov V, Kaneva R, Thyroff-Friesinger U, Rehak E (1998) Influence of the cytochrome P4502D6*4 allele on the pharmacokinetics of controlled-release metoprolol. Eur J Clin Pharmacol 54:469–474

    Article  PubMed  CAS  Google Scholar 

  12. Lennard MS, Lewis RV, Brawn LA, Tucker GT, Ramsay LE, Jackson PR, Woods HF (1989) Timolol metabolism and debrisoquine oxidation polymorphism: a population study. Br J Clin Pharmacol 27:429–434

    PubMed  CAS  Google Scholar 

  13. Lennard MS, Tucker GT, Woods HF (1986) The polymorphic oxidation of beta-adrenoceptor antagonists. Clinical pharmacokinetic considerations. Clin Pharmacokinet 11:1–17

    Article  PubMed  CAS  Google Scholar 

  14. Levin MC, Marullo S, Muntaner O, Andersson B, Magnusson Y (2002) The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem 277:30429–30435

    Article  PubMed  CAS  Google Scholar 

  15. Lewis RV, Lennard MS, Jackson PR, Tucker GT, Ramsay LE, Woods HF (1985) Timolol and atenolol: relationships between oxidation phenotype, pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 19:329–333

    PubMed  CAS  Google Scholar 

  16. Liggett SB (2003) Polymorphisms of adrenergic receptors: variations on a theme. Assay Drug Dev Technol 1:317–326

    Article  PubMed  CAS  Google Scholar 

  17. Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 14:143–149

    PubMed  CAS  Google Scholar 

  18. Mason DA, Moore JD, Green SA, Liggett SB (1999) A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem 274:12670–12674

    Article  PubMed  CAS  Google Scholar 

  19. McGourty JC, Silas JH, Fleming JJ, McBurney A, Ward JW (1985) Pharmacokinetics and beta-blocking effects of timolol in poor and extensive metabolizers of debrisoquin. Clin Pharmacol Ther 38:409–413

    Article  PubMed  CAS  Google Scholar 

  20. Muller B, Zopf K, Bachofer J, Steimer W (2003) Optimized strategy for rapid cytochrome P450 2D6 genotyping by real-time long PCR. Clin Chem 49:1624–1631

    Article  PubMed  Google Scholar 

  21. Newton GE, Azevedo ER, Parker JD (1999) Inotropic and sympathetic responses to the intracoronary infusion of a beta2-receptor agonist: a human in vivo study. Circulation 99:2402–2407

    PubMed  CAS  Google Scholar 

  22. Nieminen T, Uusitalo H, Turjanmaa V, Bjarnhall G, Hedenstrom H, Maenpaa J, Ropo A, Heikkila P, Kahonen M (2005) Association between low plasma levels of ophthalmic timolol and haemodynamics in glaucoma patients. Eur J Clin Pharmacol 61:369–374

    Article  PubMed  CAS  Google Scholar 

  23. Nino J, Tahvanainen K, Uusitalo H, Turjanmaa V, Hutri-Kähönen N, Kaila T, Ropo A, Kuusela T, Kähönen M (2002) Cardiovascular effects of ophthalmic 0.5% timolol aqueous solution and 0.1% timolol hydrogel. Clin Physiol Funct Imaging 22:271–278

    Article  PubMed  CAS  Google Scholar 

  24. O’Shaughnessy KM, Fu B, Dickerson C, Thurston D, Brown MJ (2000) The gain-of-function G389R variant of the beta1-adrenoceptor does not influence blood pressure or heart rate response to beta-blockade in hypertensive subjects. Clin Sci (Lond) 99:233–238

    Article  CAS  Google Scholar 

  25. Rathz DA, Brown KM, Kramer LA, Liggett SB (2002) Amino acid 49 polymorphisms of the human beta1-adrenergic receptor affect agonist-promoted trafficking. J Cardiovasc Pharmacol 39:155–160

    Article  PubMed  CAS  Google Scholar 

  26. Rau T, Heide R, Bergmann K, Wuttke H, Werner U, Feifel N, Eschenhagen T (2002) Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics 12:465–472

    Article  PubMed  CAS  Google Scholar 

  27. Rouland JF, Morel-Mandrino P, Elena PP, Polzer H, Sunder Raj P (2002) Timolol 0.1% gel (Nyogel 0.1%) once daily versus conventional timolol 0.5% solution twice daily: a comparison of efficacy and safety. Ophthalmologica 216:449–454

    Article  PubMed  CAS  Google Scholar 

  28. Siest G, Jeannesson E, Berrahmoune H, Maumus S, Marteau JB, Mohr S, Visvikis S (2004) Pharmacogenomics and drug response in cardiovascular disorders. Pharmacogenomics 5:779–802

    Article  PubMed  CAS  Google Scholar 

  29. Small KM, McGraw DW, Liggett SB (2003) Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 43:381–411

    Article  PubMed  CAS  Google Scholar 

  30. Smith RL (1985) Polymorphic metabolism of the beta-adrenoreceptor blocking drugs and its clinical relevance. Eur J Clin Pharmacol 28 (Suppl):77–84

    Article  PubMed  CAS  Google Scholar 

  31. Sofowora GG, Dishy V, Muszkat M, Xie HG, Kim RB, Harris PA, Prasad HC, Byrne DW, Nair UB, Wood AJ, Stein CM (2003) A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade. Clin Pharmacol Ther 73:366–371

    Article  PubMed  CAS  Google Scholar 

  32. Stewart WC, Stewart JA, Crockett S, Kubilus C, Brown A, Shams N (2002) Comparison of the cardiovascular effects of unoprostone 0.15%, timolol 0.5% and placebo in healthy adults during exercise using a treadmill test. Acta Ophthalmol Scand 80:272–276

    Article  PubMed  CAS  Google Scholar 

  33. Waldock A, Snape J, Graham CM (2000) Effects of glaucoma medications on the cardiorespiratory and intraocular pressure status of newly diagnosed glaucoma patients. Br J Ophthalmol 84:710–713

    Article  PubMed  CAS  Google Scholar 

  34. Van Buskirk EM (1980) Adverse reactions from timolol administration. Ophthalmology 87:447–450

    PubMed  Google Scholar 

  35. Zineh I, Beitelshees AL, Gaedigk A, Walker JR, Pauly DF, Eberst K, Leeder JS, Phillips MS, Gelfand CA, Johnson JA (2004) Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther 76:536–544

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Mrs. Pirjo Järventausta and Ms. Nina Peltonen are acknowledged for their skillful technical assistance. The experiments comply with the current Finnish laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomo Nieminen.

Additional information

Financial support has been received from the Medical Research Fund of Tampere University Hospital, Emil Aaltonen Foundation and Santen Oy, Tampere, Finland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieminen, T., Uusitalo, H., Mäenpää, J. et al. Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol. A pilot study. Eur J Clin Pharmacol 61, 811–819 (2005). https://doi.org/10.1007/s00228-005-0052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-005-0052-4

Keywords

Navigation