Skip to main content
Log in

Effect of silymarin on the pharmacokinetics of losartan and its active metabolite E-3174 in healthy Chinese volunteers

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of silymarin on the pharmacokinetics of losartan and its active metabolite E-3174 and its relationship with CYP2C9 genotypes.

Methods

Twelve healthy adult men of known CYP2C9 genotype (six CYP2C9*1/*1 and six CYP2C9*1/*3) were recruited in a two-phase randomized crossover design study. The pharmacokinetics of losartan and E-3174 were measured before and after a 14-day treatment with 140 mg of silymarin three times daily.

Results

The area under the plasma concentration–time curve (AUC) of losartan increased significantly following a 14-day silymarin treatment in subjects with the CYP2C9*1/*1 genotype, but not in those with the CYP2C9*1/*3 genotype. The AUC of E-3174 decreased significantly with a silymarin pretreatment in both CYP2C9*1/*1 and the CYP2C9*1/*3 subjects. The metabolic ratio of losartan (ratio of \({\text{AUC}}_{{\text{0}} - \infty } {\text{ }}\) of E-3174 to \({\text{AUC}}_{{\text{0}} - \infty } \) of losartan) decreased significantly after a 14-day treatment with silymarin in individuals with the CYP2C9*1/*1 genotype (p < 0.05), but not in those with the CYP2C9*1/*3 genotype (p = 0.065).

Conclusion

Silymarin inhibits the metabolism of losartan to E-3174, with the magnitude of the interaction differing in individuals with different CYP2C9 genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Simanek V, Kren V, Ulrichova J et al (2000) Silymarin: What is in the name? An appeal for a change of editorial policy. Hepatology 32:442–444

    Article  PubMed  CAS  Google Scholar 

  2. Schulz HU, Schürer M, Krumbiegel G et al (1995) The solubility and bioequivalence of silymarin preparations. Arzneimittelforschung 45:61–64

    PubMed  CAS  Google Scholar 

  3. Kvasnicka F, Bíba B, Sevcík R et al (2003) Analysis of the active components of silymarin. J Chromatogr A 990:239–245

    Article  PubMed  CAS  Google Scholar 

  4. Weyhenmeyer R, Mascher H, Birkmayer J (1992) Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. Int J Clin Pharmacol Ther Toxicol 30:134–138

    PubMed  CAS  Google Scholar 

  5. Salmi HA, Sarna S (1982) Effect of silymarin on chemical, functional, and morphological alterations of the liver. A double-blind controlled study. Scand J Gastroenterol 17:517–521

    Article  PubMed  CAS  Google Scholar 

  6. Ferenci P, Dragosics B, Dittrich H et al (1989) Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol 9:105–113

    Article  PubMed  CAS  Google Scholar 

  7. Gazák R, Walterová D, Kren V (2007) Silybin and silymarin—new and emerging applications in medicine. Curr Med Chem 14:315–338

    Article  PubMed  Google Scholar 

  8. Timmermans PB, Wong PC, Chiu AT et al (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251

    PubMed  CAS  Google Scholar 

  9. Lo MW, Goldberg MR, McCrea JB et al (1995) Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clin Pharmacol Ther 58:641–649

    Article  PubMed  CAS  Google Scholar 

  10. Munafo A, Christen Y, Nussberger J et al (1992) Drug concentration response relationships in normal volunteers after oral administration of losartan, an angiotensin II receptor antagonist. Clin Pharmacol Ther 51:513–521

    PubMed  CAS  Google Scholar 

  11. Sachinidis A, Ko Y, Weisser P et al (1993) EXP3174, a metabolite of losartan (MK 954, DuP 753) is more potent than losartan in blocking the angiotensin II-induced responses in vascular smooth muscle cells. J Hypertens 11:155–162

    Article  PubMed  CAS  Google Scholar 

  12. Stearns RA, Chakravarty PK, Chen R et al (1995) Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab Dispos 23:207–215

    PubMed  CAS  Google Scholar 

  13. Kaukonen KM, Olkkola KT, Neuvonen PJ (1998) Fluconazole but not itraconazole decreases the metabolism of losartan to E-3174. Eur J Clin Pharmacol 53:445–449

    Article  PubMed  CAS  Google Scholar 

  14. Meadowcroft AM, Williamson KM, Patterson JH et al (1999) The effects of fluvastatin, a CYP2C9 inhibitor, on losartan pharmacokinetics in healthy volunteers. J Clin Pharmacol 39:418–424

    Article  PubMed  CAS  Google Scholar 

  15. McCrea JB, Cribb A, Rushmore T et al (1999) Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther 65:348–352

    Article  PubMed  CAS  Google Scholar 

  16. Yasar U, Tybring G, Hidestrand M et al (2001) Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos 29:1051–1056

    PubMed  CAS  Google Scholar 

  17. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538

    Article  PubMed  CAS  Google Scholar 

  18. Kirchheiner J, Brockmöller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77:1–16

    Article  PubMed  CAS  Google Scholar 

  19. Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12:251–263

    Article  PubMed  CAS  Google Scholar 

  20. Zuber R, Modrianský M, Dvorák Z et al (2002) Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities. Phytother Res 16:632–638

    Article  PubMed  CAS  Google Scholar 

  21. Sridar C, Goosen TC, Kent UM et al (2004) Silybin inactivates cytochromes P450 3A4 and 2C9 and inhibits major hepatic glucuronosyltransferases. Drug Metab Dispos 32:587–594

    Article  PubMed  CAS  Google Scholar 

  22. Beckmann-Knopp S, Rietbrock S, Weyhenmeyer R et al (2000) Inhibitory effects of silibinin on cytochrome P-450 enzymes in human liver microsomes. Pharmacol Toxicol 86:250–256

    Article  PubMed  CAS  Google Scholar 

  23. Venkataramanan R, Ramachandran V, Komoroski BJ et al (2000) Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures. Drug Metab Dispos 8:1270–1273

    Google Scholar 

  24. Chrungoo VJ, Reen RK, Singh K, Singh J (1997) Effects of silymarin on UDP-glucuronic acid and glucuronidation activity in the rat isolated hepatocytes and liver in relation to D-galactosamine toxicity. Indian J Exp Biol 35:256–263

    PubMed  CAS  Google Scholar 

  25. Zhang S, Morris ME (2003) Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther 304:1258–1267

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen H, Zhang S, Morris ME (2003) Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J Pharm Sci 92:250–257

    Article  PubMed  CAS  Google Scholar 

  27. Mills E, Wilson K, Clarke M et al (2005) Milk thistle and indinavir: a randomized controlled pharmacokinetics study and meta-analysis. Eur J Clin Pharmacol 61:1–7

    Article  PubMed  CAS  Google Scholar 

  28. Gurley BJ, Gardner SF, Hubbard MA et al (2004) In vivo assessment of botanical supplementation on human cytochrome P450 phenotypes: Citrus aurantium, Echinacea purpurea, milk thistle, and saw palmetto. Clin Pharmacol Ther 76:428–440

    Article  PubMed  Google Scholar 

  29. Fuhr U, Beckmann-Knopp S, Jetter A et al (2007) The effect of silymarin on oral nifedipine pharmacokinetics. Planta Med 73:1429–1435

    Article  PubMed  CAS  Google Scholar 

  30. Hong X, Zhang S, Mao G et al (2005) CYP2C9*3 allelic variant is associated with metabolism of irbesartan in Chinese population. Eur J Clin Pharmacol 61:627–34

    Article  PubMed  CAS  Google Scholar 

  31. Ritter MA, Furtek CI, Lo MW (1997) An improved method for the simultaneous determination of losartan and its major metabolite, EXP3174, in human plasma and urine by high-performance liquid chromatography with fluorescence detection. J Pharm Biomed Anal 15:1021–1029

    Article  PubMed  CAS  Google Scholar 

  32. González L, López JA, Alonso RM et al (2002) Fast screening method for the determination of angiotensin II receptor antagonists in human plasma by high-performance liquid chromatography with fluorimetric detection. J Chromatogr A 949:49–60

    Article  PubMed  Google Scholar 

  33. Yasar U, Forslund-Bergengren C, Tybring G et al (2002) Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 71:89–98

    Article  PubMed  CAS  Google Scholar 

  34. Leber HW, Knauff S (1976) Influence of silymarin on drug metabolizing enzymes in rat and man. Arzneimittelforschung 26:1603–1605

    PubMed  CAS  Google Scholar 

  35. Saller R, Meier R, Brignoli R (2001) The use of silymarin in the treatment of liver diseases. Drugs 61:2035–2063

    Article  PubMed  CAS  Google Scholar 

  36. Goldberg MR, Lo MW, Deutsch PJ et al (1996) Phenobarbital minimally alters plasma concentrations of losartan and its active metabolite E-3174. Clin Pharmacol Ther 59:268–274

    Article  PubMed  CAS  Google Scholar 

  37. Kazierad DJ, Martin DE, Blum RA et al (1997) Effect of fluconazole on the pharmacokinetics of eprosartan and losartan in healthy male volunteers. Clin Pharmacol Ther 62:417–425

    Article  PubMed  CAS  Google Scholar 

  38. Williamson KM, Patterson JH, McQueen RH et al (1998) Effects of erythromycin or rifampin on losartan pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 63:316–323

    Article  PubMed  CAS  Google Scholar 

  39. McCrea JB, Lo MW, Furtek CI et al (1996) Ketoconazole does not effect the systemic conversion of losartan to E-3174. Clin Pharmacol Ther 59:169–169

    Article  Google Scholar 

  40. Goldberg MR, Lo MW, Bradstreet TE et al (1995) Effects of cimetidine on pharmacokinetics and pharmacodynamics of losartan, an AT1-selective non-peptide angiotensin II receptor antagonist. Eur J Clin Pharmacol 49:115–119

    Article  PubMed  CAS  Google Scholar 

  41. Alonen A, Finel M, Kostiainen R (2008) The human UDP-glucuronosyltransferase UGT1A3 is highly selective towards N2 in the tetrazole ring of losartan, candesartan, and zolarsartan. Biochem Pharmacol 76:763–772

    Article  PubMed  CAS  Google Scholar 

  42. Yin T, Maekawa K, Kamide K et al (2008) Genetic variations of CYP2C9 in 724 Japanese individuals and their impact on the antihypertensive effects of losartan. Hypertens Res 31:1549–1557

    Article  PubMed  CAS  Google Scholar 

  43. Sekino K, Kubota T, Okada Y et al (2003) Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur J Clin Pharmacol 59:589–592

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from Madaus AG, Cologne, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hao Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Guo, D., Chen, Y. et al. Effect of silymarin on the pharmacokinetics of losartan and its active metabolite E-3174 in healthy Chinese volunteers. Eur J Clin Pharmacol 65, 585–591 (2009). https://doi.org/10.1007/s00228-009-0624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-009-0624-9

Keywords

Navigation