Skip to main content
Log in

Organic Anion Transporting Polypeptides of the OATP/SLCO Superfamily: Identification of New Members in Nonmammalian Species, Comparative Modeling and a Potential Transport Mode

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Organic anion-transporting polypeptides (human, OATPs; other animals, Oatps; gene symbol, SLCO/Slco) form a transport protein superfamily that mediates the translocation of amphipathic substrates across the plasma membrane of animal cells. So far, OATPs/Oatps have been identified in human, rat and mouse tissues. In this study, we used bioinformatic tools to detect new members of the OATP/SLCO superfamily in nonmammalian species and to build models for the three-dimensional structure of OATPs/Oatps. New OATP/SLCO superfamily members, some of which form distinct novel families, were identified in chicken, zebrafish, frog, fruit fly and worm species. The lack of OATP/SLCO superfamily members in plants, yeast and bacteria suggests the emergence of an ancient Oatp protein in an early ancestor of the animal kingdom. Structural models were generated for the representative members OATP1B3 and OATP2B1 based on the known structures of the major facilitator superfamily of transport proteins. A model was also built for the large extracellular region between transmembrane helices 9 and 10, following the identification of a novel homology with the Kazal-type serine protease inhibitors. Along with the electrostatic potential and the conservation of key amino acid residues, we propose a common transport mechanism for all OATPs/Oatps, whereby substrates are translocated through a central, positively charged pore in a rocker-switch type of mechanism. Several amino acid residues were identified that may play crucial roles in the proposed transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abramson J., Smirnova I., Kasho V., Verner G., Kaback H.R., Iwata S. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science. 301:610–615

    Article  PubMed  CAS  Google Scholar 

  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A., Apweiler R., Wu C.H., Barker W.C., Boeckmann B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane M., Martin M.J., Natale D.A., O’Donovan C., Redaschi N., Yeh L.S. 2005. The universal protein resource (UniProt). Nucleic Acids Res. 33:D154–D159

    Article  PubMed  CAS  Google Scholar 

  • Baker N.A., Sept D., Joseph S., Holst M.J., McCammon J.A. 2001. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  • Bateman A., Coin L., Durbin R., Finn R.D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S., Sonnhammer E.L.L., Studholme D.J., Yeats C., Eddy S.R. 2004. The Pfam protein families database. Nucleic Acids Res. 32:D138–D141

    Article  PubMed  CAS  Google Scholar 

  • Bolognesi M., Gatti G., Menegatti E., Guarneri M., Marquart M., Papamokos E., Huber R. 1982. Three-dimensional structure of the complex between pancreatic secretory inhibitor (Kazal type) and trypsinogen at 1.8 angstroms resolution. Structure solution, crystallographic refinement and preliminary structural interpretation. J. Mol. Biol. 162:839–868

    Article  PubMed  CAS  Google Scholar 

  • Catherinot, V., Labesse G. 2004. ViTO:tool for refinement of protein sequence-structure alignments. Bioinformatics 20:3694–3696

    PubMed  CAS  Google Scholar 

  • Chang A.B., Lin R., Studley W.K., Tran C.V., Milton H.S. 2004. Phylogeny as a guide to structure and function of membrane transport proteins. Mol. Membr. Biol. 21:171–181

    Article  PubMed  CAS  Google Scholar 

  • DeLano, W.L. 2002. The PyMOL molecular graphics system, http://www.pymol.org

  • Eddy S.R. 1998. HMMER: Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  • Fattinger K., Cattori V., Hagenbuch B., Meier P.J., Stieger B. 2000. Rifamycin SV and rifamycin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology 32:82–86

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J. 1989. PHYLIP–phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fischer W.J., Altheimer S., Cattori V., Meier P.J., Dietrich D.R., Hagenbuch B. 2005. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol. 203:257–263

    Article  PubMed  CAS  Google Scholar 

  • Fiser A., Sali A. 2003. MODELLER: Generation and refinement of homology-based protein structure models. Methods Enzymol. 374:461–491

    Article  PubMed  CAS  Google Scholar 

  • Ginalski K., Elofsson A., Fischer D., Rychlewski L. 2003. 3D-jury: A simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018

    Article  PubMed  CAS  Google Scholar 

  • Hagenbuch B., Gao B., Meier P.J. 2002. Transport of xenobiotics across the blood-brain barrier. News Physiol. Sci. 17:231–234

    PubMed  CAS  Google Scholar 

  • Hagenbuch B., Meier P.J. 2003. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta 1609:1–18

    PubMed  CAS  Google Scholar 

  • Hagenbuch B., Meier P.J. 2004. Organic anion transporting polypeptides of the OATP/SLC21 family: Phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pfluegers Arch. 447:653–665

    Article  CAS  Google Scholar 

  • Huang Y., Lemieux M.J., Song J., Auer M., Wang D. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  PubMed  CAS  Google Scholar 

  • Hunte C., Screpanti E., Venturi M., Rimon A., Padan E., Michel H. 2005. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Ismair M.G., Stieger B., Cattori V., Hagenbuch B., Fried M., Meier P.J., Kullak-Ublick G.A. 2001. Hepatic uptake of cholecystokinin octapeptide (CCK-8) by organic anion transporting polypeptides Oatp4 (Slc21a6) and OATP8 (SLC21A8) from rat and human liver. Gastroenterology 121:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Jacquemin E., Hagenbuch B., Stieger B., Wolkoff A.W., Meier P.J. 1994. Expression Cloning of a Rat Liver Na+-Independent Organic Anion Transporter. Proc. Natl. Acad. Sci. U.S.A. 91:133–137

    PubMed  CAS  Google Scholar 

  • Jaroszewski L., Rychlewski L., Li Z., Li W., Godzik A. 2005. FFAS03: A server for profile-profile sequence alignments. Nucleic Acids Res. 33:W284–W288

    Article  PubMed  CAS  Google Scholar 

  • Katoh K., Misawa K., Kuma K., Miyata T. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Krogh A., Larsson B., von Heijne G., Sonnhammer E.L.L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Kullak-Ublick G.A., Hagenbuch B., Stieger B., Schteingart C.D., Hoffmann A.F., Wolkoff A.W., Meier P.J. 1995. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology 109:1274–1282

    Article  PubMed  CAS  Google Scholar 

  • Kullak-Ublick G.A., Stieger B., Meier P.J. 2004. Enterohepatic bile salt transporters in normal physiology and in liver disease. Gastroenterology 126:322–342

    Article  PubMed  CAS  Google Scholar 

  • Letschert K., Keppler D., Konig J. 2004. Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics 14:441–452

    Article  PubMed  CAS  Google Scholar 

  • Lichtarge, O., Bourne, H.R., Cohen, F.E. 1996. An Evolutionary Trace Method Defines Binding Surfaces Common to Protein Families. J. Mol. Biol. 257:342–358

    Article  PubMed  CAS  Google Scholar 

  • Luthy R., Bowie J.U., Eisenberg D. 1992. Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  PubMed  CAS  Google Scholar 

  • Maiden, M.C., Davis, E.O., Baldwin, S.A., Moore, D.C., Henderson, P.J. 1987. Mammalian and bacterial sugar transport proteins are homologous. Nature 325:641

    Article  PubMed  CAS  Google Scholar 

  • Meier P.J., Stieger B. 2002. Bile salt transporters. Annu. Rev. Physiol. 64:635–661

    Article  PubMed  CAS  Google Scholar 

  • Meier-Abt F., Faulstich H., Hagenbuch B. 2004. Identification of phalloidin uptake systems of rat and human liver. Biochim. Biophys. Acta 1664:64–69

    PubMed  CAS  Google Scholar 

  • Mizuguchi K., Deane C.M., Blundell T.L., Johnson M.S., Overington J.P. 1998a. JOY: Protein sequence-structure representation and analysis. Bioinformatics 14:617–623

    Article  CAS  Google Scholar 

  • Mizuguchi K., Deane C.M., Blundell T.L., Overington J.P. 1998b. HOMSTRAD: A database of protein structure alignments for homologous families. Protein Sci. 7:2469–2471

    Article  CAS  Google Scholar 

  • Moult J., Fidelis K., Zemla A., Hubbard T. 2003. Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins 53(Suppl. 6):334–339

    Article  PubMed  CAS  Google Scholar 

  • Nozawa T., Nakajima M., Tamai I., Noda K., Nezu J.-I., Sai Y., Tsuji A., Yokoi T. 2002. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): Allele frequencies in the Japanese population and functional analysis. J. Pharmacol. Exp. Ther. 302:804–813

    Article  PubMed  CAS  Google Scholar 

  • Pizzagalli F., Varga Z., Huber R.D., Folkers G., Meier P.J., St. Pierre M.V. 2003. Identification of steroid sulfate transport processes in the human mammary gland. J. Clin. Endocrinol. Metab. 88:3902–3912

    Article  PubMed  CAS  Google Scholar 

  • Rose D.R., Seaton B.A., Petsko G.A., Novotný J., Margolies M.N., Locke E., Haber E. 1983. Crystallization of the Fab fragment of a monoclonal anti-digoxin antibody and its complex with digoxin. J. Mol. Biol. 165:203–206

    PubMed  CAS  Google Scholar 

  • Sali A., Blundell T.L. 1990. Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J. Mol. Biol. 212:403–428

    Article  PubMed  CAS  Google Scholar 

  • Sali A., Blundell T.L. 1993. Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779–815

    Article  PubMed  CAS  Google Scholar 

  • Sayle, R.E., Milner-White J. 2005. RasMol: Biomolecular graphics for all. Trend in Biochemical Sciences (TIBS) 20:374.

    Article  Google Scholar 

  • Shi J., Blundell T.L., Mizuguchi K. 2001. FUGUE: Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310:243–257

    Article  PubMed  CAS  Google Scholar 

  • Sippl M.J. 1993. Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  • St. Pierre M.V., Hagenbuch B., Ugele B., Meier P.J., Stallmach T. 2002. Characterization of an organic anion transporting polypeptide (OATP-B) in human placenta. J. Clin. Endocrinol. Metab. 87:1856–1863

    Article  PubMed  CAS  Google Scholar 

  • St. Pierre M.V., Kullak-Ublick G.A., Hagenbuch B., Meier P.J. 2001. Bile acid transport in hepatic and non-hepatic tissues. J. Exp. Biol. 204:1673–1686

    PubMed  CAS  Google Scholar 

  • Tamai I., Nezu J., Uchino H., Sai Y., Oku A., Shimane M., Tsuji A. 2000. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 273:251–260

    Article  PubMed  CAS  Google Scholar 

  • Taylor W.R. 1986. The classification of amino acid conservation. J. Theor. Biol. 119:205–218

    PubMed  CAS  Google Scholar 

  • Tirona R.G., Kim R.B. 2002. Pharmacogenomics of organic anion transporting polypeptides (OATPs). Arch. Drug Deliv. Rev. 54:1343–1352

    Article  CAS  Google Scholar 

  • Tirona R.G., Leake B.F., Merino G., Kim R.B. 2001. Polymorphisms in OATP-C: Identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem. 276:35669–35675

    Article  PubMed  CAS  Google Scholar 

  • Vardy E., Arkin I.T., Gottschalk K.E., Kaback H.R., Schuldiner S. 2004. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci. 13:1832–1840

    Article  PubMed  CAS  Google Scholar 

  • Verdonk M.L., Cole J.C., Hartshorn M.J., Murray C.W., Taylor R.D. 2003. Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A., Singh S.K., Kawate T., Jin Y., Gouaux E. 2005. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  • Zhu, L., Song, L., Chang, Y., Xu, W., Wu, L. 2005. Molecular cloning, characterization and expression of a novel serine proteinase inhibitor gene in bay scallops. Fish Shellfish Immunol. in press

Download references

Acknowledgments

We thank Dr. Bruno Hagenbuch (Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center) and Dr. Bruno Stieger (Department of Clinical Pharmacology and Toxicology, University Hospital Zurich) for their advice and provision of unpublished data. Y. M. is supported by a scholarship from the Algerian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Mizuguchi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier-Abt, F., Mokrab, Y. & Mizuguchi, K. Organic Anion Transporting Polypeptides of the OATP/SLCO Superfamily: Identification of New Members in Nonmammalian Species, Comparative Modeling and a Potential Transport Mode. J Membrane Biol 208, 213–227 (2006). https://doi.org/10.1007/s00232-005-7004-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-7004-x

Keywords

Navigation