Skip to main content

Advertisement

Log in

Calcium-Sensing Receptor Stimulation Induces Nonselective Cation Channel Activation in Breast Cancer Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The calcium-sensing receptor (CaR) is expressed in epithelial ducts of both normal human breast and breast cancer tissue, as well as in the MCF-7 cell line as assessed by immunohistochemistry and Western blot analysis. However, to date, there are no data regarding the transduction pathways of CaR in breast cancer cells. In this study, we show that a CaR agonist, spermine, and increased extracellular Ca2+ ([Ca2+]o) sequentially activate two inward currents at –80 mV. The first was highly permeable to Ca2+ and inhibited by 2-aminophenyl borate (2-APB). In contrast, the second was more sensitive to Na+ and Li+ than to Ca2+ and insensitive to 2-APB. Furthermore, intracellular dialysis with high Mg2+, flufenamic acid or amiloride perfusion was without any effect on the second current. Both currents were inhibited by La3+. Calcium imaging recordings showed that both [Ca2+]o and spermine induced an increase in intracellular calcium ([Ca2+]i) and that removal of extracellular Ca2+ or perfusion of 2-APB caused a decline in [Ca2+]i. It is well known that stimulation of CaR by an increase in [Ca2+]o or with spermine is associated with activation of phospholipase C (PLC). Inhibition of PLC reduced the [Ca2+]o-stimulated [Ca2+]i increase. Lastly, reverse-transcriptase polymerase chain reaction showed that MCF-7 cells expressed canonical transient receptor potential (TRPCs) channels. Our results suggest that, in MCF-7 cells, CaR is functionally coupled to Ca2+-permeable cationic TRPCs, for which TRPC1 and TRPC6 are the most likely candidates for the highly selective Ca2+ current. Moreover, the pharmacology of the second Na+ current excludes the involvement of the more selective Na+ transient receptor potential melastatin (TRPM4 and TRPM5) and the classical epithelial Na+ channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beech D.J. 2005. TRPC1: Store-operated channel and more. Pfluegers Arch. 451:53–60

    Article  CAS  Google Scholar 

  • Boring C.C., Squire T.S., Tong T., Montgomery S. 1994. Cancer statistics. CA Cancer J. Clin. 44:7–26

    PubMed  CAS  Google Scholar 

  • Broad L.M., Braun F.J., Lievremont J.P., Bird G.S., Kurosaki T., Putney J.W., Jr. 2001. Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J. Biol. Chem. 276:15945–15952

    Article  PubMed  CAS  Google Scholar 

  • Brown E.M., Enyedi P., LeBoff M., Rotberg J., Preston J., Chen C. 1987. High extracellular Ca2+ and Mg2+ stimulate accumulation of inositol phosphates in bovine parathyroid cells. FEBS Lett. 218:113–138

    Article  PubMed  CAS  Google Scholar 

  • Brown E.M., Gamba G., Riccardi D., Lombardi M., Butters R., Kifor O., Sun A., Hediger M.A., Lytton J., Hebert S.C. 1993. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  PubMed  CAS  Google Scholar 

  • Brown E.M., MacLeod R.J. 2001. Extracellular calcium sensing and extracellular calcium signalling. Physiol. Rev. 81:239–297

    PubMed  CAS  Google Scholar 

  • Buchs N., Manen D., Bonjour J.P., Rizzoli R. 2000. Calcium stimulates parathyroid hormone-related protein production in Leydig tumor cells through a putative cation-sensing mechanism. Eur. J. Endocrinol. 142:500–505

    Article  PubMed  CAS  Google Scholar 

  • Chattopadyay N., Evliyaoglu C., Heese O., Carroll R., Sanders J., Black P., Brown E.M. 2000. Regulation of secretion of PTHrP by Ca2+-sensing receptor in human astrocytes, astrocytomas, and meningiomas. Am. J. Physiol. 279:C691-C699

    Google Scholar 

  • Cheng I., Klingensmith M.E., Chattopadhyay N., Kifor O., Butters R.R., Soybel D.I., Brown E.M. 1998. Identification and localization of the extracellular calcium-sensing receptor in human breast. J. Clin. Endocrinol. Metab. 83:703–707

    Article  PubMed  CAS  Google Scholar 

  • Falzon M., Du P. 2000. Enhanced growth of MCF-7 breast cancer cells overexpressing parathyroid hormone-related peptide. Endocrinology 141:1882–1892

    Article  PubMed  CAS  Google Scholar 

  • Fatherazi S., Belton C.M., Cai S., Zarif S., Goodwin P.C., Lamont R.J., Izutsu K.T. 2004. Calcium receptor message, expression and function decrease in differentiating keratinocytes. Pfluegers Arch. 448:93–104

    Article  CAS  Google Scholar 

  • Guise T.A., Yin T.A., Taylor S.D., Kumagai Y., Dallas M., Boyce B.F., Yoneda T., Mundy G.R. 1996. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J. Clin. Invest. 98:1544–1549

    Article  PubMed  CAS  Google Scholar 

  • Huang C., Handlogten M.E., Miller R.T. 2002. Parallel activation of phosphotidylinositol 4-kinase and phospholipase C by the extracellular calcium-sensing receptor. J. Biol. Chem. 277:20293–20300

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y.F., Zhang Z., Kifor O., Lane C.R., Suinn S.J., Bai M. 2002. Protein kinase C (PKC) phosphorylation of the Ca2+-sensing receptor (CaR) modulates functional interaction of G proteins with the CaR cytoplasmic tail. J. Biol. Chem. 277:50543–50549

    Article  PubMed  CAS  Google Scholar 

  • Journe F., Dumon J.C., Kheddoumi N., Fox J., Laios I., Leclercq G., Body J.J. 2004. Extracellular calcium downregulates estrogen receptor alpha and increases its transcriptional activity through calcium-sensing receptor in breast cancer cells. Bone 35:479–488

    Article  PubMed  CAS  Google Scholar 

  • Kraft R., Harteneck C. 2005. The mammalian melastatin-related transient receptor potential cation channels: An overview. Pfluegers Arch. 451:204–211

    Article  CAS  Google Scholar 

  • Li S., Huang S., Peng S.B. 2005. Overexpression of G protein-coupled receptors in cancer cells: Involvement in tumor progression. Int. J. Oncol. 27:1329–1338

    PubMed  CAS  Google Scholar 

  • Liapis H., Crouch E.C., Grosso L.E., Kitazawa S., Wick M.R. 1993. Expression of parathyroidlike protein in normal, proliferative, and neoplastic human breast tissues. Am. J. Pathol. 174:1169–1178

    Google Scholar 

  • Mundy G.R. 1997. Mechanisms of bone metastasis. Cancer 80:1546–1556

    Article  PubMed  CAS  Google Scholar 

  • Nemeth E.F., Scarpa A. 1987. Rapid mobilization of cellular Ca2+ in bovine parathyroid cells evoked by extracellular divalent cations. Evidence for a cell surface calcium receptor. J. Biol. Chem. 262:5188–5196

    PubMed  CAS  Google Scholar 

  • Ouadid-Ahidouch H., Roudbaraki M., Delcourt P., Ahidouch A., Joury N., Prevarskaya N. 2004. Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: Association with cell cycle progression. Am. J. Physiol. 287:C125-C134

    Article  CAS  Google Scholar 

  • Parekh A.B., Putney J.W., Jr. 2005. Store-operated calcium channels. Physiol. Rev. 85:757–810

    Article  PubMed  CAS  Google Scholar 

  • Parkash J., Chaudhry M.A., Rhoten W.B. 2004. Calbindin-D28k and calcium sensing receptor cooperate in MCF-7 human breast cancer cells. Int. J. Oncol. 24:1111–1119

    PubMed  CAS  Google Scholar 

  • Pedersen S.F., Owsianik G., Nilius B. 2005. TRP channels: An overview. Cell Calcium 38:233–252

    Article  PubMed  CAS  Google Scholar 

  • Rodland K.D. 2004. The role of the calcium-sensing receptor in cancer. Cell Calcium 35:291–295

    Article  PubMed  CAS  Google Scholar 

  • Sanders J.L., Chattopadhyay N., Kifor O., Yamaguchi T., Butter R.R., Brown E.M. 2000. Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology 141:4357–4364

    Article  PubMed  CAS  Google Scholar 

  • Sanders J.L., Chattopadhyay N., Kifor O., Yamaguchi T., Butter R.R., Brown E.M. 2001. Ca2+-sensing receptor expression and PTHrP secretion in PC-3 human prostate cancer cells. Am. J. Physiol. 281:E1267-E1274

    CAS  Google Scholar 

  • Shen X., Qian L., Falzon M. 2004. PTH-related protein enhances MCF-7 breast cancer cell adhesion, migration, and invasion via an intracrine pathway. Exp. Cell. Res. 294:420–433

    Article  PubMed  CAS  Google Scholar 

  • Silver I.A., Murrills R.J., Etherington D.J. 1988. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclast. Exp. Cell. Res. 175:266–276

    Article  PubMed  CAS  Google Scholar 

  • Ullrich N.D., Voets T., Prenen J., Vennekens R., Talavera K., Droogmans G., Nilius B. 2005. Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278

    Article  PubMed  CAS  Google Scholar 

  • VanHouten J.N. 2005. Calcium sensing by the mammary gland. Neoplasia 10:129–139

    Google Scholar 

  • VanHouten J.N., Danna P., McGeoch G., Brown E.M., Krapcho K., Neville M., Wysolmerski J.J. 2004. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J. Clin. Invest. 113:598–608

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T., Ye C., Chattopadhyay N., Sanders J.L., Vassilev P.M., Brown E.M. 2000. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: Potential role in regulation of a nonselective cation channel. Calcif. Tissue Int. 66:375–382

    Article  PubMed  CAS  Google Scholar 

  • Ye C.P., Kanazirskia M., Quinn S., Brown E.M., Vassilev P.M. 1996a. Modulation by polycationic Ca2+-sensing receptor agonists of nonselective cation channels in rat hippocampal neurons. Biochem. Biophys. Res. Commun. 224:271–280

    Article  CAS  Google Scholar 

  • Ye C.P., Rogers K., Bai M., Quinn S., Seidman C.E., Seidman J.G., Brown E.M., Vassilev P.M. 1996b. Agonists of the Ca2+-sensing receptor (CaR) activate nonselective cation channels in HEK293 cells stably transfected with the human CaR. Biochem. Biophys. Res. Commun. 226:272–279

    Article  Google Scholar 

  • Ye C.P., Ho-Pao C.L., Kanazirskia M., Quinn S., Rogers K., Seidman C.E., Seidman J.G., Brown E.M., Vassilev P.M. 1997. Amyloid-beta proteins activate Ca2+-permeable channels through calcium-sensing receptors. J. Neurosci. Res. 47:547–554

    Article  PubMed  CAS  Google Scholar 

  • Zitt C., Halaszovich C.R., Luckhoff A. 2002. The TRP family of cation channels: Probing and advancing the concepts on receptor-activated calcium entry. Prog. Neurobiol. 66:243–264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jean François Lefebvre and Philippe Delcourt for their excellent technical assistance. This work was supported by the Ministère de l’Education Nationale, the Ligue Nationale Contre le Cancer, the Association pour la Recherche Contre le Cancer and the Region Picardie, France and by grants from Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halima Ouadid-Ahidouch.

Additional information

This work concretizes the scientific cooperation between Université de Picardie Jules Verne and Université Ibn-Zohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiani, Y.E., Ahidouch, A., Roudbaraki, M. et al. Calcium-Sensing Receptor Stimulation Induces Nonselective Cation Channel Activation in Breast Cancer Cells. J Membrane Biol 211, 127–137 (2006). https://doi.org/10.1007/s00232-006-0017-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0017-2

Keywords

Navigation