Skip to main content
Log in

Several Conserved Positively Charged Amino Acids in OATP1B1 are Involved in Binding or Translocation of Different Substrates

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

OATP1B1 and 1B3 are related transporters mediating uptake of numerous compounds into hepatocytes. A putative model of OATP1B3 with a “positive binding pocket” containing conserved positively charged amino acids was predicted (Meier-Abt et al. J Membr Biol 208:213–227, 2005). Based on this model, we tested the hypothesis that these positive amino acids are important for OATP1B1 function. We made mutants and measured surface expression and uptake of estradiol-17β-glucuronide, estrone-3-sulfate and bromosulfophthalein in HEK293 cells. Two of the mutants had low surface expression levels: R181K at 10% and R580A at 30% of wild-type OATP1B1. A lysine at position 580 (R580K) rescued the expression of R580A. Mutations of several amino acids resulted in substrate-dependent effects. The largest changes were seen for estradiol-17β-glucuronide, while estrone-3-sulfate and bromosulfophthalein transport were less affected. The wild-type OATP1B1 K m value for estradiol-17β-glucuronide of 5.35 ± 0.54 μM was increased by R57A to 30.5 ± 3.64 μM and decreased by R580K to 0.52 ± 0.18 μM. For estrone-3-sulfate the wild-type high-affinity K m value of 0.55 ± 0.12 μM was increased by K361R to 1.8 ± 0.47 μM and decreased by R580K to 0.1 ± 0.04 μM. In addition, R580K reduced the V max values for all three substrates to <25% of wild-type OATP1B1. Mutations at intracellular K90, H92 and R93 mainly affected V max values for estradiol-17β-glucuronide uptake. In conclusion, the conserved amino acids R57, K361 and R580 seem to be part of the substrate binding sites and/or translocation pathways in OATP1B1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, Nomura H, Unno M, Suzuki M, Naitoh T, Matsuno S, Yawo H (1999) Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem 274:17159–17163

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, Adachi H, Fujiwara K, Okabe M, Suzuki T, Nunoki K, Sato E, Kakyo M, Nishio T, Sugita J, Asano N, Tanemoto M, Seki M, Date F, Ono K, Kondo Y, Shiiba K, Suzuki M, Ohtani H, Shimosegawa T, Iinuma K, Nagura H, Ito S, Matsuno S (2001) LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology 120:1689–1699

    Article  CAS  PubMed  Google Scholar 

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  CAS  PubMed  Google Scholar 

  • Chan BS, Bao Y, Schuster VL (2002) Role of conserved transmembrane cationic amino acids in the prostaglandin transporter PGT. Biochemistry 41:9215–9221

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, König J, Leier I, Buchholz U, Keppler D (2001) Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem 276:9626–9630

    Article  CAS  PubMed  Google Scholar 

  • Elens L, Capron A, Kerckhove VV, Lerut J, Mourad M, Lison D, Wallemacq P, Haufroid V (2007) 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenet Genomics 17:873–883

    Article  CAS  PubMed  Google Scholar 

  • Glaeser H, Mandery K, Sticht H, Fromm MF, König J (2010) Relevance of conserved lysine and arginine residues in transmembrane helices for the transport activity of organic anion transporting polypeptide 1B3. Br J Pharmacol 159:698–708

    Article  CAS  PubMed  Google Scholar 

  • Gui C, Hagenbuch B (2009) Role of transmembrane domain 10 for the function of organic anion transporting polypeptide 1B1. Protein Sci 18:2298–2306

    Article  CAS  PubMed  Google Scholar 

  • Gui C, Miao Y, Thompson L, Wahlgren B, Mock M, Stieger B, Hagenbuch B (2008) Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3. Eur J Pharmacol 584:57–65

    Article  CAS  PubMed  Google Scholar 

  • Hagenbuch B, Gui C (2008) Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38:778–801

    Article  CAS  PubMed  Google Scholar 

  • Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 447:653–665

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, Kim HT, Lee JS (2008) Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan—pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer 59:69–75

    Article  PubMed  Google Scholar 

  • Hirano M, Maeda K, Shitara Y, Sugiyama Y (2004) Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther 311:139–146

    Article  CAS  PubMed  Google Scholar 

  • Ho RH, Leake BF, Roberts RL, Lee W, Kim RB (2004) Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem 279:7213–7222

    Article  CAS  PubMed  Google Scholar 

  • Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP, Kirchgessner TG (1999) A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem 274:37161–37168

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  CAS  PubMed  Google Scholar 

  • Ieiri I, Suzuki H, Kimura M, Takane H, Nishizato Y, Irie S, Urae A, Kawabata K, Higuchi S, Otsubo K, Sugiyama Y (2004) Influence of common variants in the pharmacokinetic genes (OATP-C, UGT1A1, and MRP2) on serum bilirubin levels in healthy subjects. Hepatol Res 30:91–95

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Suzuki H, Ieiri I, Otsubo K, Sugiyama Y (2004) Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C). Pharmacogenetics 14:749–757

    Article  CAS  PubMed  Google Scholar 

  • Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K (2005) Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 15:513–522

    Article  CAS  PubMed  Google Scholar 

  • König J, Cui Y, Nies AT, Keppler D (2000) A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 278:G156–G164

    PubMed  Google Scholar 

  • König J, Seithel A, Gradhand U, Fromm MF (2006) Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch Pharmacol 372:432–443

    Article  PubMed  Google Scholar 

  • Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B (2001) Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:525–533

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Ieiri I, Yasuda K, Fujino A, Fujiwara H, Otsubo K, Hirano M, Watanabe T, Kitamura Y, Kusuhara H, Sugiyama Y (2006) Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin Pharmacol Ther 79:427–439

    Article  CAS  PubMed  Google Scholar 

  • Meier-Abt F, Mokrab Y, Mizuguchi K (2005) Organic anion transporting polypeptides of the OATP/SLCO superfamily: identification of new members in nonmammalian species, comparative modeling and a potential transport mode. J Membr Biol 208:213–227

    Article  CAS  PubMed  Google Scholar 

  • Michalski C, Cui Y, Nies AT, Nuessler AK, Neuhaus P, Zanger UM, Klein K, Eichelbaum M, Keppler D, König J (2002) A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J Biol Chem 277:43058–43063

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa M, Maeda K, Aoyama A, Sugiyama Y (2009) The eighth and ninth transmembrane domains in organic anion transporting polypeptide 1B1 affect the transport kinetics of estrone-3-sulfate and estradiol-17beta-d-glucuronide. J Pharmacol Exp Ther 329:551–557

    Article  CAS  PubMed  Google Scholar 

  • Neuvonen PJ, Backman JT, Niemi M (2008) Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin Pharmacokinet 47:463–474

    Article  CAS  PubMed  Google Scholar 

  • Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M, Kyrklund C, Backman JT, Kerb R, Schwab M, Neuvonen PJ, Eichelbaum M, Kivisto KT (2004) High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 14:429–440

    Article  CAS  PubMed  Google Scholar 

  • Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, Takane H, Irie S, Kusuhara H, Urasaki Y, Urae A, Higuchi S, Otsubo K, Sugiyama Y (2003) Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 73:554–565

    Article  CAS  PubMed  Google Scholar 

  • Noe J, Portmann R, Brun ME, Funk C (2007) Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 35:1308–1314

    Article  CAS  PubMed  Google Scholar 

  • Nozawa T, Nakajima M, Tamai I, Noda K, Nezu J, Sai Y, Tsuji A, Yokoi T (2002) Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J Pharmacol Exp Ther 302:804–813

    Article  CAS  PubMed  Google Scholar 

  • Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I (2005) Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 33:434–439

    Article  CAS  PubMed  Google Scholar 

  • Oswald S, König J, Lutjohann D, Giessmann T, Kroemer HK, Rimmbach C, Rosskopf D, Fromm MF, Siegmund W (2008) Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1. Pharmacogenet Genomics 18:559–568

    Article  CAS  PubMed  Google Scholar 

  • Pasanen MK, Miettinen TA, Gylling H, Neuvonen PJ, Niemi M (2008) Polymorphism of the hepatic influx transporter organic anion transporting polypeptide 1B1 is associated with increased cholesterol synthesis rate. Pharmacogenet Genomics 18:921–926

    Article  CAS  PubMed  Google Scholar 

  • Tamai I, Nezu J, Uchino H, Sai Y, Oku A, Shimane M, Tsuji A (2000) Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun 273:251–260

    Article  CAS  PubMed  Google Scholar 

  • Tamai I, Nozawa T, Koshida M, Nezu J, Sai Y, Tsuji A (2001) Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm Res 18:1262–1269

    Article  CAS  PubMed  Google Scholar 

  • Tirona RG, Leake BF, Merino G, Kim RB (2001) Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 276:35669–35675

    Article  CAS  PubMed  Google Scholar 

  • Tirona RG, Leake BF, Wolkoff AW, Kim RB (2003) Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther 304:223–228

    Article  CAS  PubMed  Google Scholar 

  • van der Deure WM, Friesema EC, de Jong FJ, de Rijke YB, de Jong FH, Uitterlinden AG, Breteler MM, Peeters RP, Visser TJ (2008) Organic anion transporter 1B1: an important factor in hepatic thyroid hormone and estrogen transport and metabolism. Endocrinology 149:4695–4701

    Article  PubMed  Google Scholar 

  • Vormfelde SV, Toliat MR, Schirmer M, Meineke I, Nurnberg P, Brockmoller J (2008) The polymorphisms Asn130Asp and Val174Ala in OATP1B1 and the CYP2C9 allele *3 independently affect torsemide pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 83:815–817

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Hata S, Xiao Y, Murray JW, Wolkoff AW (2008) Topological assessment of oatp1a1: a 12-transmembrane domain integral membrane protein with three N-linked carbohydrate chains. Am J Physiol Gastrointest Liver Physiol 294:G1052–G1059

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, He YJ, Gan Z, Fan L, Li Q, Wang A, Liu ZQ, Deng S, Huang YF, Xu LY, Zhou HH (2007) OATP1B1 polymorphism is a major determinant of serum bilirubin level but not associated with rifampicin-mediated bilirubin elevation. Clin Exp Pharmacol Physiol 34:1240–1244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Patrick A. Courtney for his help with some of the mutations. This work was supported by National Institutes of Health grants RR021940 and GM077336 and by an unrestricted grant from the 3M Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Hagenbuch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, Y.M., Hagenbuch, B. Several Conserved Positively Charged Amino Acids in OATP1B1 are Involved in Binding or Translocation of Different Substrates. J Membrane Biol 236, 279–290 (2010). https://doi.org/10.1007/s00232-010-9300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9300-3

Keywords

Navigation