Skip to main content
Log in

The Role of Shox2 in SAN Development and Function

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Embryonic development is a tightly regulated process, and many families of genes functions to provide a regulatory genetic network to achieve such a program. The homeobox genes are an extensive family that encodes transcription factors with a characteristic 60-amino acid homeodomain. Mutations in these genes or in the encoded proteins might result in structural malformations, physiological defects, and even embryonic death. Mutations in the short-stature homeobox gene (SHOX) is associated with idiopathic short stature in humans, as observed in patients with Turner syndrome and/or Leri-Weill dyschondrosteosis. A closely related human homolog, SHOX2, has not been linked to any syndrome or defect so far. In mice, a SHOX ortholog gene is not present in the genome; however, a true SHOX2 ortholog has been identified. Analyses of Shox2 knockout mouse models have showed crucial functions during embryonic development, including limb skeletogenesis, palatogenesis, temporomandibular joint formation, and cardiovascular development. During embryonic cardiac development, Shox2 is restrictedly expressed in the sinus venosus region, including the sinoatrial node (SAN) and the sinus valves. Shox2 null mutant is embryonically lethal due to cardiovascular defects, including a severely hypoplastic SAN and sinus valves attributed to a significantly decreased level of cell proliferation in addition to an abnormal low heartbeat rate (bradycardia). In addition, it has been demonstrated that Shox2 regulates a genetic network through the repression of Nkx2.5 to maintain the SAN fate and thus plays essential roles in its proper formation and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig.3

Similar content being viewed by others

References

  1. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573

    Article  PubMed  CAS  Google Scholar 

  2. Blaschke RJ, Monaghan AP, Schiller S, Schechinger B, Rao E, Padilla-Nash H et al (1998) SHOT, a SHOX-related homeobox gene, is implicated in craniofacial, brain, heart, and limb development. Proc Natl Acad Sci USA 95:2406–2411

    Article  PubMed  CAS  Google Scholar 

  3. Blaschke RJ, Hahurij ND, Kuijper S, Just S, Wisse LJ, Deissler K et al (2007) Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 115:1830–1838

    Article  PubMed  CAS  Google Scholar 

  4. Boncinelli E (1997) Homeobox genes and disease. Curr Opin Genet Dev 7:331–337

    Article  PubMed  CAS  Google Scholar 

  5. Brant AM, McCoid S, Thomas HM, Baldwin SA, Davies A, Parker JC et al (1992) Analysis of the glucose transporter content of islet cell lines: implications for glucose-stimulated insulin release. Cell Signal 4:641–650

    Article  PubMed  CAS  Google Scholar 

  6. Christoffels VM, Smits GJ, Kispert A, Moorman AF (2010) Development of the pacemaker tissues of the heart. Circ Res 106:240–254

    Article  PubMed  CAS  Google Scholar 

  7. Clement-Jones M, Schiller S, Rao E, Blaschke RJ, Zuniga A, Zeller R et al (2000) The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Hum Mol Genet 9:695–702

    Article  PubMed  CAS  Google Scholar 

  8. Cobb J, Dierich A, Huss-Garcia Y, Duboule D (2006) A mouse model for human short-stature syndromes identifies Shox2 as an upstream regulator of Runx2 during long-bone development. Proc Natl Acad Sci USA 103:4511–4515

    Article  PubMed  CAS  Google Scholar 

  9. Davenport TG, Jerome-Majewska LA, Papaioannou VE (2003) Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 130:2263–2273

    Article  PubMed  CAS  Google Scholar 

  10. Durham D, Worthley LI (2002) Cardiac arrhythmias: diagnosis and management. The bradycardias. Crit Care Resusc 4:54–60

    PubMed  CAS  Google Scholar 

  11. Ellison JW, Wardak Z, Young MF, Gehron Robey P, Laig-Webster M, Chiong W (1997) PHOG, a candidate gene for involvement in the short stature of Turner syndrome. Hum Mol Genet 6:1341–1347

    Article  PubMed  CAS  Google Scholar 

  12. Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J et al (2009) Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol 327:376–385

    Article  PubMed  CAS  Google Scholar 

  13. Espinoza-Lewis RA, Liu H, Sun C, Chen C, Jiao K, Chen Y (2011) Ectopic expression of Nkx2.5 suppresses the formation of the sinoatrial node in mice. Dev Biol 356:359–369

    Article  PubMed  CAS  Google Scholar 

  14. Furukawa T, Kozak CA, Cepko CL (1997) Rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci USA 94:3088–3093

    Article  PubMed  CAS  Google Scholar 

  15. Gallego A, Duran AC, De Andres AV, Navarro P, Munoz-Chapuli R (1997) Anatomy and development of the sinoatrial valves in the dogfish (Scyliorhinus canicula). Anat Rec 248:224–232

    Article  PubMed  CAS  Google Scholar 

  16. Garcia-Frigola C, Shi Y, Evans SM (2003) Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 3:777–783

    Article  PubMed  CAS  Google Scholar 

  17. Gaussin V (2004) Offbeat mice. Anat Rec A Discov Mol Cell Evol Biol 280:1022–1026

    Article  PubMed  Google Scholar 

  18. Glaser T, Walton DS, Maas RL (1992) Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 2:232–239

    Article  PubMed  CAS  Google Scholar 

  19. Gu S, Wei N, Yu L, Fei J, Chen Y (2008) Shox2-deficiency leads to dysplasia and ankylosis of the temporomandibular joint in mice. Mech Dev 125:729–742

    Article  PubMed  CAS  Google Scholar 

  20. Hamada H, Meno C, Watanabe D, Saijoh Y (2002) Establishment of vertebrate left-right asymmetry. Nat Rev Genet 3:103–113

    Article  PubMed  CAS  Google Scholar 

  21. Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT et al (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62:489–499

    Article  PubMed  CAS  Google Scholar 

  22. Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY et al (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21:1098–1112

    Article  PubMed  CAS  Google Scholar 

  23. Kasahara H, Bartunkova S, Schinke M, Tanaka M, Izumo S (1998) Cardiac and extracardiac expression of Csx/Nkx2.5 homeodomain protein. Circ Res 82:936–946

    Article  PubMed  CAS  Google Scholar 

  24. Komuro I, Izumo S (1993) Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci USA 90:8145–8149

    Article  PubMed  CAS  Google Scholar 

  25. Kshirsagar SA, Blaschke TF, Sheiner LB, Krygowski M, Acosta EP, Verotta D (2007) Improving data reliability using a non-compliance detection method versus using pharmacokinetic criteria. J Pharmacokinet Pharmacodyn 34:35–55

    Article  PubMed  CAS  Google Scholar 

  26. Liu J, Dobrzynski H, Yanni J, Boyett MR, Lei M (2007) Organisation of the mouse sinoatrial node: structure and expression of HCN channels. Cardiovasc Res 73:729–738

    Article  PubMed  CAS  Google Scholar 

  27. Liu H, Chen CH, Espinoza-Lewis RA, Jiao Z, Sheu I, Hu X et al (2011) Functional redundancy between human SHOX and mouse Shox2 genes in the regulation of sinoatrial node formation and pacemaking function. J Biol Chem 286:17029–17038

    Article  PubMed  CAS  Google Scholar 

  28. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nk2-5. Genes Dev 9:1654–1666

    Article  PubMed  CAS  Google Scholar 

  29. Marchini A, Marttila T, Winter A, Caldeira S, Malanchi I, Blaschke RJ et al (2004) The short stature homeodomain protein SHOX induces cellular growth arrest and apoptosis and is expressed in human growth plate chondrocytes. J Biol Chem 279:37103–37114

    Article  PubMed  CAS  Google Scholar 

  30. Mommersteeg MT, Hoogaars WM, Prall OW, de Gier-de VC, Wiese C, Clout DE et al (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100:354–362

    Article  PubMed  CAS  Google Scholar 

  31. Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268:1646–1652

    Article  PubMed  CAS  Google Scholar 

  32. Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ (2001) Embryonic expression of an Nk2-5/Cre gene using ROSA26 reporter mice. Genesis 31:176–180

    Article  PubMed  CAS  Google Scholar 

  33. Munns CJ, Haase HR, Crowther LM, Hayes MT, Blaschke R, Rappold G et al (2004) Expression of SHOX in human fetal and childhood growth plate. J Clin Endocrinol Metab 89:4130–4135

    Article  PubMed  CAS  Google Scholar 

  34. Nishii K, Shibata Y (2006) Mode and determination of the initial contraction stage in the mouse embryo heart. Anat Embryol (Berlin) 211:95–100

    Article  Google Scholar 

  35. Puskaric S, Schmitteckert S, Mori AD, Glaser A, Schneider KU, Bruneau BG et al (2010) Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart. Hum Mol Genet 19:4625–4633

    Article  PubMed  CAS  Google Scholar 

  36. Rao E, Weiss B, Fukami M, Rump A, Niesler B, Mertz A et al (1997) Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet 16:54–63

    Article  PubMed  CAS  Google Scholar 

  37. Rovescalli AC, Asoh S, Nirenberg M (1996) Cloning and characterization of four murine homeobox genes. Proc Natl Acad Sci USA 93:10691–10696

    Article  PubMed  CAS  Google Scholar 

  38. Ryan AK, Blumberg B, Rodriguez-Esteban C, Yonei-Tamura S, Tamura K, Tsukui T et al (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394:545–551

    Article  PubMed  CAS  Google Scholar 

  39. Santoro B, Tibbs GR (1999) The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci 868:741–764

    Article  PubMed  CAS  Google Scholar 

  40. Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR et al (2000) Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 20:5264–5275

    PubMed  CAS  Google Scholar 

  41. Savelieva I, Camm AJ (2008) I f inhibition with ivabradine: electrophysiological effects and safety. Drug Saf 31:95–107

    Article  PubMed  CAS  Google Scholar 

  42. Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  PubMed  CAS  Google Scholar 

  43. Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA et al (1996) Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14:392–399

    Article  PubMed  CAS  Google Scholar 

  44. Semina EV, Reiter RS, Murray JC (1998) A new human homeobox gene OGI2X is a member of the most conserved homeobox gene family and is expressed during heart development in mouse. Hum Mol Genet 7:415–422

    Article  PubMed  CAS  Google Scholar 

  45. Shears DJ, Vassal HJ, Goodman FR, Palmer RW, Reardon W, Superti-Furga A et al (1998) Mutation and deletion of the pseudoautosomal gene SHOX cause Leri-Weill dyschondrosteosis. Nat Genet 19:70–73

    Article  PubMed  CAS  Google Scholar 

  46. Soufan AT, van den Hoff MJ, Ruijter JM, de Boer PA, Hagoort J, Webb S et al (2004) Reconstruction of the patterns of gene expression in the developing mouse heart reveals an architectural arrangement that facilitates the understanding of atrial malformations and arrhythmias. Circ Res 95:1207–1215

    Article  PubMed  CAS  Google Scholar 

  47. Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132:4897–4910

    Article  PubMed  CAS  Google Scholar 

  48. Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M et al (2003) The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA 100:15235–15240

    Article  PubMed  CAS  Google Scholar 

  49. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999) The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280

    PubMed  CAS  Google Scholar 

  50. van den Boogaard MJ, Dorland M, Beemer FA, van Amstel HK (2000) MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet 24:342–343

    Article  PubMed  Google Scholar 

  51. Van Kempen MJ, Vermeulen JL, Moorman AF, Gros D, Paul DL, Lamers WH (1996) Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart. Cardiovasc Res 32:886–900

    PubMed  Google Scholar 

  52. Van Mierop LH (1967) Location of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol 212:407–415

    PubMed  Google Scholar 

  53. Van Mierop LH, Gessner IH (1970) The morphologic development of the sinoatrial node in the mouse. Am J Cardiol 25:204–212

    Article  PubMed  Google Scholar 

  54. van Schaick HS, Smidt MP, Rovescalli AC, Luijten M, van der Kleij AA, Asoh S et al (1997) Homeobox gene Prx3 expression in rodent brain and extraneural tissues. Proc Natl Acad Sci USA 94:12993–12998

    Article  PubMed  Google Scholar 

  55. Vastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE (1996) A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 13:417–421

    Article  PubMed  CAS  Google Scholar 

  56. Wang Y, Morishima M, Zheng M, Uchino T, Mannen K, Takahashi A et al (2007) Transcription factors Csx/Nkx2.5 and GATA4 distinctly regulate expression of Ca2+ channels in neonatal rat heart. J Mol Cell Cardiol 42:1045–1053

    Article  PubMed  Google Scholar 

  57. Wang J, Klysik E, Sood S, Johnson RL, Wehrens XH, Martin JF (2010) Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc Natl Acad Sci USA 107:9753–9758

    Article  PubMed  CAS  Google Scholar 

  58. Watanabe Y, Benson DW, Yano S, Akagi T, Yoshino M, Murray JC (2002) Two novel frameshift mutations in NKX2.5 result in novel features including visceral inversus and sinus venosus type ASD. J Med Genet 39:807–811

    Article  PubMed  CAS  Google Scholar 

  59. Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, de Gier-de VriesC et al (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104:388–397

    Article  PubMed  CAS  Google Scholar 

  60. Yu X, St. Amand TR, Wang S, Li G, Zhang Y, Hu YP et al (2001) Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick. Development 128:1005–1013

    PubMed  CAS  Google Scholar 

  61. Yu L, Gu S, Alappat S, Song Y, Yan M, Zhang X et al (2005) Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate. Development 132:4397–4406

    Article  PubMed  CAS  Google Scholar 

  62. Yu L, Liu H, Yan M, Yang J, Long F, Muneoka K et al (2007) Shox2 is required for chondrocyte proliferation and maturation in proximal limb skeleton. Dev Biol 306:549–559

    Article  PubMed  CAS  Google Scholar 

  63. Zinn AR, Wei F, Zhang L, Elder FF, Scott CI Jr, Marttila P et al (2002) Complete SHOX deficiency causes Langer mesomelic dysplasia. Am J Med Genet 110:158–163

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study cited from the investigators laboratories was supported by NIH Grant No. R01 DE17792 (to Y. P. C.) and an NSF of China Grant No. 30871422 to (Y. Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiPing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Espinoza-Lewis, R.A., Chen, C. et al. The Role of Shox2 in SAN Development and Function. Pediatr Cardiol 33, 882–889 (2012). https://doi.org/10.1007/s00246-012-0179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-012-0179-x

Keywords

Navigation