Skip to main content

Advertisement

Log in

Th17 cells in autoimmune demyelinating disease

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Recently published studies in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) have demonstrated an association between the development of demyelinating plaques and the accumulation of Th17 cells in the central nervous system and periphery. However, a causal relationship has been difficult to establish. In fact, in reports published thus far, interleukin (IL)-17A deficiency or neutralization in vivo attenuates, but does not completely abrogate, EAE. There is growing evidence that clinically similar forms of autoimmune demyelinating disease can be driven by myelin-specific T cells of distinct lineages with different degrees of dependence on IL-17A production to achieve their pathological effects. While such observations cast doubts about the potential therapeutic efficacy of Th17 blocking agents in MS, the collective data suggest that IL-17A expression in peripheral blood mononuclear cells could serve as a surrogate biomarker of neuroinflammation and plaque formation and be a useful outcome measure for future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Olsson T (1992) Cytokines in neuroinflammatory disease: role of myelin autoreactive T cell production of interferon-gamma. J Neuroimmunol 40:211–218

    Article  CAS  PubMed  Google Scholar 

  2. Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579–621

    Article  CAS  PubMed  Google Scholar 

  3. Liblau RS, Singer SM, McDevitt HO (1995) Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 16:34–38

    Article  CAS  PubMed  Google Scholar 

  4. Benvenuto R, Paroli M, Buttinelli C, Franco A, Barnaba V, Fieschi C, Balsano F (1992) Tumor necrosis factor-alpha and interferon-gamma synthesis by cerebrospinal fluid-derived T cell clones in multiple sclerosis. Ann N Y Acad Sci 650:341–346

    Article  CAS  PubMed  Google Scholar 

  5. Hirsch RL, Panitch HS, Johnson KP (1985) Lymphocytes from multiple sclerosis patients produce elevated levels of gamma interferon in vitro. J Clin Immunol 5:386–389

    Article  CAS  PubMed  Google Scholar 

  6. Khoury SJ, Hancock WW, Weiner HL (1992) Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 176:1355–1364

    Article  CAS  PubMed  Google Scholar 

  7. Merrill JE, Kono DH, Clayton J, Ando DG, Hinton DR, Hofman FM (1992) Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc Natl Acad Sci USA 89:574–578

    Article  CAS  PubMed  Google Scholar 

  8. Traugott U, Lebon P (1988) Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann Neurol 24:243–251

    Article  CAS  PubMed  Google Scholar 

  9. Voskuhl RR, Martin R, Bergman C, Dalal M, Ruddle NH, McFarland HF (1993) T helper 1 (Th1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity 15:137–143

    Article  CAS  PubMed  Google Scholar 

  10. Khoruts A, Miller SD, Jenkins MK (1995) Neuroantigen-specific Th2 cells are inefficient suppressors of experimental autoimmune encephalomyelitis induced by effector Th1 cells. J Immunol 155:5011–5017

    CAS  PubMed  Google Scholar 

  11. Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA Jr (1993) Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 177:57–68

    Article  CAS  PubMed  Google Scholar 

  12. Panitch HS, Hirsch RL, Haley AS, Johnson KP (1987) Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1:893–895

    Article  CAS  PubMed  Google Scholar 

  13. Balashov KE, Smith DR, Khoury SJ, Hafler DA, Weiner HL (1997) Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci USA 94:599–603

    Article  CAS  PubMed  Google Scholar 

  14. Comabella M, Balashov K, Issazadeh S, Smith D, Weiner HL, Khoury SJ (1998) Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy. J Clin Invest 102:671–678

    Article  CAS  PubMed  Google Scholar 

  15. Fassbender K, Ragoschke A, Rossol S, Schwartz A, Mielke O, Paulig A, Hennerici M (1998) Increased release of interleukin-12p40 in MS: association with intracerebral inflammation. Neurology 51:753–758

    CAS  PubMed  Google Scholar 

  16. Monteyne P, Guillaume B, Sindic CJ (1998) B7-1 (CD80), B7-2 (CD86), interleukin-12 and transforming growth factor-beta mRNA expression in CSF and peripheral blood mononuclear cells from multiple sclerosis patients. J Neuroimmunol 91:198–203

    Article  CAS  PubMed  Google Scholar 

  17. Windhagen A, Newcombe J, Dangond F, Strand C, Woodroofe MN, Cuzner ML, Hafler DA (1995) Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 182:1985–1996

    Article  CAS  PubMed  Google Scholar 

  18. Issazadeh S, Lorentzen JC, Mustafa MI, Hojeberg B, Mussener A, Olsson T (1996) Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-beta. J Neuroimmunol 69:103–115

    Article  CAS  PubMed  Google Scholar 

  19. Segal BM, Shevach EM (1996) IL-12 unmasks latent autoimmune disease in resistant mice. J Exp Med 184:771–775

    Article  CAS  PubMed  Google Scholar 

  20. Smith T, Hewson AK, Kingsley CI, Leonard JP, Cuzner ML (1997) Interleukin-12 induces relapse in experimental allergic encephalomyelitis in the Lewis rat. Am J Pathol 150:1909–1917

    CAS  PubMed  Google Scholar 

  21. Deshpande P, King IL, Segal BM (2006) IL-12 driven upregulation of P-selectin ligand on myelin-specific T cells is a critical step in an animal model of autoimmune demyelination. J Neuroimmunol 173:35–44

    Article  CAS  PubMed  Google Scholar 

  22. Waldburger KE, Hastings RC, Schaub RG, Goldman SJ, Leonard JP (1996) Adoptive transfer of experimental allergic encephalomyelitis after in vitro treatment with recombinant murine interleukin-12. Preferential expansion of interferon-gamma-producing cells and increased expression of macrophage-associated inducible nitric oxide synthase as immunomodulatory mechanisms. Am J Pathol 148:375–382

    CAS  PubMed  Google Scholar 

  23. Constantinescu CS, Wysocka M, Hilliard B, Ventura ES, Lavi E, Trinchieri G, Rostami A (1998) Antibodies against IL-12 prevent superantigen-induced and spontaneous relapses of experimental autoimmune encephalomyelitis. J Immunol 161:5097–5104

    CAS  PubMed  Google Scholar 

  24. Leonard JP, Waldburger KE, Goldman SJ (1995) Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 181:381–386

    Article  CAS  PubMed  Google Scholar 

  25. Segal BM, Dwyer BK, Shevach EM (1998) An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 187:537–546

    Article  CAS  PubMed  Google Scholar 

  26. Becher B, Durell BG, Noelle RJ (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 110:493–497

    CAS  PubMed  Google Scholar 

  27. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, Dalton D, Fathman CG (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 156:5–7

    CAS  PubMed  Google Scholar 

  28. Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A (2002) IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 169:7104–7110

    CAS  PubMed  Google Scholar 

  29. Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA (1996) IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157:3223–3227

    CAS  PubMed  Google Scholar 

  30. Willenborg DO, Fordham SA, Staykova MA, Ramshaw IA, Cowden WB (1999) IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J Immunol 163:5278–5286

    CAS  PubMed  Google Scholar 

  31. Zhang GX, Gran B, Yu S, Li J, Siglienti I, Chen X, Kamoun M, Rostami A (2003) Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 170:2153–2160

    CAS  PubMed  Google Scholar 

  32. Ali Shokrgozar M, Sarial S, Amirzargar A, Shokri F, Rezaei N, Arjang Z, Radfar J, Yousefi-Behzadi M, Ali Sahraian M, Lotfi J (2009) IL-2, IFN-gamma, and IL-12 gene polymorphisms and susceptibility to multiple sclerosis. J Clin Immunol 29:747–751

    Google Scholar 

  33. Begovich AB, Chang M, Caillier SJ, Lew D, Catanese JJ, Wang J, Hauser SL, Oksenberg JR (2007) The autoimmune disease-associated IL12B and IL23R polymorphisms in multiple sclerosis. Hum Immunol 68:934–937

    Article  CAS  PubMed  Google Scholar 

  34. Hall MA, McGlinn E, Coakley G, Fisher SA, Boki K, Middleton D, Kaklamani E, Moutsopoulos H, Loughran TP Jr, Ollier WE, Panayi GS, Lanchbury JS (2000) Genetic polymorphism of IL-12 p40 gene in immune-mediated disease. Genes Immun 1:219–224

    Article  CAS  PubMed  Google Scholar 

  35. van Veen T, Crusius JB, Schrijver HM, Bouma G, Killestein J, van Winsen L, Salvador Pena A, Polman CH, Uitdehaag BM (2001) Interleukin-12p40 genotype plays a role in the susceptibility to multiple sclerosis. Ann Neurol 50:275

    Article  PubMed  Google Scholar 

  36. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–772

    Article  CAS  PubMed  Google Scholar 

  37. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  38. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  39. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  Google Scholar 

  40. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957

    Article  CAS  PubMed  Google Scholar 

  41. Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205:1535–1541

    Article  CAS  PubMed  Google Scholar 

  42. Durelli L, Conti L, Clerico M, Boselli D, Contessa G, Ripellino P, Ferrero B, Eid P, Novelli F (2009) T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol 65:499–509

    Article  CAS  PubMed  Google Scholar 

  43. Matusevicius D, Kivisakk P, He B, Kostulas N, Ozenci V, Fredrikson S, Link H (1999) Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5:101–104

    CAS  PubMed  Google Scholar 

  44. Vaknin-Dembinsky A, Balashov K, Weiner HL (2006) IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 176:7768–7774

    CAS  PubMed  Google Scholar 

  45. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508

    Article  CAS  PubMed  Google Scholar 

  46. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    Article  CAS  PubMed  Google Scholar 

  47. Montes M, Zhang X, Berthelot L, Laplaud DA, Brouard S, Jin J, Rogan S, Armao D, Jewells V, Soulillou JP, Markovic-Plese S (2009) Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin Immunol 130:133–144

    Article  CAS  PubMed  Google Scholar 

  48. Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–476

    Article  CAS  PubMed  Google Scholar 

  49. Aloisi F, Care A, Borsellino G, Gallo P, Rosa S, Bassani A, Cabibbo A, Testa U, Levi G, Peschle C (1992) Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J Immunol 149:2358–2366

    CAS  PubMed  Google Scholar 

  50. Das Sarma J, Ciric B, Marek R, Sadhukhan S, Caruso ML, Shafagh J, Fitzgerald DC, Shindler KS, Rostami A (2009) Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflammation 6:14

    Article  PubMed  Google Scholar 

  51. Filipovic R, Jakovcevski I, Zecevic N (2003) GRO-alpha and CXCR2 in the human fetal brain and multiple sclerosis lesions. Dev Neurosci 25:279–290

    Article  CAS  PubMed  Google Scholar 

  52. Carlson T, Kroenke M, Rao P, Lane TE, Segal B (2008) The Th17–ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 205:811–823

    Article  CAS  PubMed  Google Scholar 

  53. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  CAS  PubMed  Google Scholar 

  54. Pelus L, Horowitz D, Cooper S, King A (2002) Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit Rev Oncol Hematol 43:257–275

    Article  PubMed  Google Scholar 

  55. King IL, Dickendesher TL, Segal BM (2009) Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113:3190–3197

    Article  CAS  PubMed  Google Scholar 

  56. Bailey SL, Schreiner B, McMahon EJ, Miller SD (2007) CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol 8:172–180

    Article  CAS  PubMed  Google Scholar 

  57. Samoilova EB, Horton JL, Hilliard B, Liu TS, Chen Y (1998) IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol 161:6480–6486

    CAS  PubMed  Google Scholar 

  58. Jacobs CA, Baker PE, Roux ER, Picha KS, Toivola B, Waugh S, Kennedy MK (1991) Experimental autoimmune encephalomyelitis is exacerbated by IL-1 alpha and suppressed by soluble IL-1 receptor. J Immunol 146:2983–2989

    CAS  PubMed  Google Scholar 

  59. Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C, Kanamoto M, Nishihara M, Iwakura Y, Hirano T (2008) Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29:628–636

    Article  CAS  PubMed  Google Scholar 

  60. Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH, Noelle RJ (2009) IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206:1653–1660

    Article  CAS  PubMed  Google Scholar 

  61. Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A (2009) IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119:61–69

    CAS  PubMed  Google Scholar 

  62. Ishizu T, Osoegawa M, Mei FJ, Kikuchi H, Tanaka M, Takakura Y, Minohara M, Murai H, Mihara F, Taniwaki T, Kira J (2005) Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128:988–1002

    Article  PubMed  Google Scholar 

  63. Ukkonen M, Wu K, Reipert B, Dastidar P, Elovaara I (2007) Cell surface adhesion molecules and cytokine profiles in primary progressive multiple sclerosis. Mult Scler 13:701–707

    Article  CAS  PubMed  Google Scholar 

  64. Scarpini E, Galimberti D, Baron P, Clerici R, Ronzoni M, Conti G, Scarlato G (2002) IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical subtypes of the disease. J Neurol Sci 195:41–46

    Article  CAS  PubMed  Google Scholar 

  65. Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L, Hunter CA, Kastelein RA, Cua DJ (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116:1317–1326

    Article  CAS  PubMed  Google Scholar 

  66. Sonobe Y, Liang J, Jin S, Zhang G, Takeuchi H, Mizuno T, Suzumura A (2008) Microglia express a functional receptor for interleukin-23. Biochem Biophys Res Commun 370:129–133

    Article  CAS  PubMed  Google Scholar 

  67. Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH (2008) Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing–remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol 7:796–804

    Article  CAS  PubMed  Google Scholar 

  68. Chen M, Chen G, Nie H, Zhang X, Niu X, Zang YC, Skinner SM, Zhang JZ, Killian JM, Hong J (2009) Regulatory effects of IFN-beta on production of osteopontin and IL-17 by CD4+ T cells in MS. Eur J Immunol 39:2525–2536

    Article  CAS  PubMed  Google Scholar 

  69. Shinohara ML, Kim JH, Garcia VA, Cantor H (2008) Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29:68–78

    Article  CAS  PubMed  Google Scholar 

  70. Zhang X, Jin J, Tang Y, Speer D, Sujkowska D, Markovic-Plese S (2009) IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. J Immunol 182:3928–3936

    Article  CAS  PubMed  Google Scholar 

  71. Guo B, Chang EY, Cheng G (2008) The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118:1680–1690

    Article  CAS  PubMed  Google Scholar 

  72. Liu M, Hu X, Wang Y, Peng F, Yang Y, Chen X, Lu Z, Zheng X (2009) Effect of high-dose methylprednisolone treatment on Th17 cells in patients with multiple sclerosis in relapse. Acta Neurol Scand 120:235–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Multiple Sclerosis Society (RG 3866-A-3 and CA 1037A1), the Dana Foundation, and the National Institutes of Health (R01NS047687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Matthew Segal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, B.M. Th17 cells in autoimmune demyelinating disease. Semin Immunopathol 32, 71–77 (2010). https://doi.org/10.1007/s00281-009-0186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0186-z

Keywords

Navigation