Skip to main content
Log in

Influences of octopamine and juvenile hormone on locomotor behavior and period gene expression in the honeybee, Apis mellifera

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Octopamine (OA) and juvenile hormone (JH) are implicated in the regulation of age-based division of labor in the honeybee, Apis mellifera. We tested the hypothesis that these two neuroendocrine signals influence task-associated plasticity in circadian and diurnal rhythms, and in brain expression of the clock gene period (per). Treatment with OA, OA antagonist (epinastine), or both, did not affect the age at onset of circadian rhythmicity or the free running period in constant darkness (DD). Young bees orally treated with OA in light–dark (LD) illumination regime for 6 days followed by DD showed reduced alpha (the period between the daily onset and offset of activity) during the first 4 days in LD and the first 4 days in DD. Oral treatment with OA, epinastine, or both, but not manipulations of JH levels, caused increased average daily levels and aberrant patterns of brain per mRNA oscillation in young bees. These results suggest that OA and JH do not influence the development or function of the central pacemaker but rather that OA influences the brain expression of a clock gene and characteristics of locomotor behavior that are not thought to be under direct control of the circadian pacemaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

5-HT:

Serotonin

CA:

Corpora allata

CT:

Circadian time

DA:

Dopamine

DD:

Constant darkness

DHBA:

Dihydroxybenzylamine

EF-1α:

Elongation factor-1α

Epi:

Epinastine

HPLC:

High-performance liquid chromatography

FRP:

Free running period

JH:

Juvenile hormone

LD:

Light–dark

Met:

Methoprene

OA:

Octopamine

PCR:

Polymerase chain reaction

Per:

Period

RT:

Reverse transcription

SCN:

Suprachiasmatic nucleus

SS:

Sugar syrup

ZT:

Zeitgeber time

References

  • Barron AB, Robinson GE (2005) Selective modulation of task performance by octopamine in honey bee (Apis mellifera) division of labour. J Comp Physiol A 191:659–668

    Article  Google Scholar 

  • Barron AB, Schulz DJ, Robinson GE (2002) Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Physiol A 188:603–610

    Article  CAS  Google Scholar 

  • Battelle BA (2002) Circadian efferent input to Limulus eyes: anatomy, circuitry, and impact. Microsc Res Techniq 58:345–355

    Article  Google Scholar 

  • Bicker G (1999) Biogenic amines in the brain of the honeybee: cellular distribution, development, and behavioral functions. Microsc Res Techniq 44:166–178

    Article  CAS  Google Scholar 

  • Bicker G, Menzel R (1989) Chemical codes for the control of behaviour in arthropods. Nature, 337:33–39

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Robinson GE (2001) Reversal of honeybee behavioural rhythms. Nature 410:1048

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Toma DP, Robinson GE (2001) Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J Biol Rhythms 16:444–456

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Wheeler DE, Robinson GE (2002a) Endocrine influences on the organization of insect societies. In: Pfaff D, rnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, Brain and Behavior, vol. III, Non-mammalian hormone-behavior systems. Academic, San Diego, pp 195–235

  • Bloch G, Sullivan JP, Robinson GE (2002b) Juvenile hormone and circadian locomotor activity in the honey bee Apis mellifera. J Insect Physiol 48:1123–1131

    Article  CAS  Google Scholar 

  • Bloch G, Solomon SM, Robinson GE, Fahrbach SE (2003) Patterns of PERIOD and pigment-dispersing hormone immunoreactivity in the brain of the European honeybee (Apis mellifera): age- and time-related plasticity. J Comp Neurol 464:269–284

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Rubinstein CD, Robinson GE (2004) Period expression in the honey bee brain is developmentally regulated and not affected by light, flight experience, or colony type. Insect Biochem Mol Biol 34:879–891

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Shemesh Y, Robinson GE (2006) Seasonal and task-related variation in free running activity rhythms in honey bees (Apis mellifera). Insect Soc 53:115–118

    Article  Google Scholar 

  • Burrell BD, Smith BH (1995) Modulation of the honey bee (Apis mellifera) sting response by octopamine. J Insect Physiol 41:671–680

    Article  CAS  Google Scholar 

  • Chyb S, Hevers W, Forte M, Wolfgang WJ, Selinger Z, Hardie RC (1999) Modulation of the light response by cAMP in Drosophila photoreceptors. J Neurosci 19:8799–8807

    PubMed  CAS  Google Scholar 

  • Cymborowski B (1998) Serotonin modulates a photic response in circadian locomotor rhythmicity of adults of the blow fly, Calliphora vicina. Physiol Entomol 23:25–32

    Article  CAS  Google Scholar 

  • Degen J, Gewecke M, Roeder T (2000) Octopamine receptors in the honey bee and locust nervous system: pharmacological similarities between homologous receptors of distantly related species. Br J Pharmacol 130:587–594

    Article  PubMed  CAS  Google Scholar 

  • Drijfhout WJ, van der Linde AG, Kooi SE, Grol CJ, Westerink BHC (1996) Norepinephrine release in the rat pineal gland: the input from the biological clock measured by in vivo microdialysis. J Neurochem 66:748–755

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  PubMed  CAS  Google Scholar 

  • Erber J, Kloppenburg P, Scheidler A (1993) Neuromodulation by serotonin and octopamine in the honeybee—behaviour, neuroanatomy and electrophysiology. Experientia 49:1073–1083

    Article  CAS  Google Scholar 

  • Franken P, Dudley CA, Estill SJ, Barakat M, Thomason R, O’Hara BF, McKnight SL (2006) NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc Nat Acad Sci USA 103:7118–7123

    Article  PubMed  CAS  Google Scholar 

  • Fussnecker BL, Smith BH, Mustard JA (2006) Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). J Insect Physiol DOI 10.1016/j.jinsphys.2006.07.008 (in press)

  • Gingras JL, Lawson EE, McNamara MC (1996) Developmental characteristics in the daily rhythm of norepinephrine concentration within rabbit brainstem regions. Reprod Fert Dev 8:189–194

    Article  CAS  Google Scholar 

  • Giray T, Huang ZY, Guzman-Novoa E, Robinson GE (1999) Physiological correlates of genetic variation for rate of behavioral development in the honeybee, Apis mellifera. Behav Ecol Sociobiol 47:17–28

    Article  Google Scholar 

  • Goel N, Governale MM, Jechura TJ, Lee TM (2000) Effects of intergeniculate leaflet lesions on circadian rhythms in Octodon degus. Brain Res 877:306–313

    Article  PubMed  CAS  Google Scholar 

  • Gracioli LF, de Moraes RLMS (2002) Juvenile hormone promotes changes in the expression of hypopharyngeal gland proteins of worker Apis mellifera (Hymenoptera:Apidae). Sociobiology 40:443–448

    Google Scholar 

  • Hall JC (1998) Genetics of biological rhythms in Drosophila. Adv Genet 38:135–184

    Article  PubMed  CAS  Google Scholar 

  • Huang ZY, Robinson GE, Tobe SS, Yagi KJ, Strambi C, Strambi A, Stay B (1991) Hormonal regulation of behavioural development in the honey bee is based on changes in the rate of juvenile hormone biosynthesis. J Insect Physiol 37:733–742

    Article  CAS  Google Scholar 

  • Kaiser W, Steiner-Kaiser J (1983) Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect. Nature 301:707–709

    Article  PubMed  CAS  Google Scholar 

  • Kaiser W (1988) Busy bees need rest, too: Behavioral and electromyographical sleep signs in honeybees. J Comp Physiol A 163:565–584

    Article  Google Scholar 

  • Khadilkar RV, Mytinger JR, Thomason LE, Runyon SL, Washicosky KJ, Jinks RN (2002) Central regulation of photosensitive membrane turnover in the lateral eye of Limulus. I. Octopamine primes the retina for daily transient rhabdom shedding. Vis Neurosci 19:283–297

    Article  PubMed  Google Scholar 

  • Klarsfeld A, Leloup JC, Rouyer F (2003) Circadian rhythms of locomotor activity in Drosophila. Behav Proc 64:161–175

    Article  Google Scholar 

  • Kloppenburg P, Erber J (1995) The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera l) .2. Electrophysiological analysis of motion-sensitive neurons in the lobula. J Comp Physiol A 176:119–129

    Article  CAS  Google Scholar 

  • Kubo T, Sasaki M, Nakamura J, Sasagawa H, Ohashi K, Takeuchi H, Natori S (1996) Change in the expression of hypopharyngeal-gland proteins of the worker honeybees (Apis mellifera L.) with age and/or role. J Biochem Tokyo 119:291–295

    PubMed  CAS  Google Scholar 

  • Lamont EW, Robinson B, Stewart J, Amir S (2005) The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Nat Acad Sci USA 102:4180–4184

    Article  PubMed  CAS  Google Scholar 

  • Linn CE, Roelofs WL (1986) Modulatory effects of octopamine and serotonin on male sensitivity and periodicity of response to sex pheromones in the cabbage looper moth, Trichoplusia ni. Arch Insect Biochem Physiol 3:161–171

    Article  CAS  Google Scholar 

  • Linn CE, Roelofs WL (1992) Role of photoperiod cues in regulating the modulatory action of octopamine on pheromone-response thresholds in the cabbage-looper moth. Arc Insect Biochem Physiol 20:285–302

    Article  CAS  Google Scholar 

  • Linn CE, Campbell MG, Poole KR, Wu WQ, Roelofs WL (1996) Effects of photoperiod on the circadian timing of pheromone response in male Trichoplusia ni: relationship to the modulatory action of octopamine. J Insect Physiol 42:881–891

    Article  CAS  Google Scholar 

  • Lohse MJ (1993) Molecular mechanisms of membrane receptor desensitization. Biochim Biophys Acta 1179:171–188

    Article  PubMed  CAS  Google Scholar 

  • Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94:547–560

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Muller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19:379–404

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Bernstein EL, Morin LP (1996) Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci 16:2097–2111

    PubMed  CAS  Google Scholar 

  • Meyer-Bernstein EL, Blanchard JH, Morin LP (1997) The serotonergic projection from the median raphe nucleus to the suprachiasmatic nucleus modulates activity phase onset, but not other circadian rhythm parameters. Brain Res 25:112–120

    Article  Google Scholar 

  • Milde JJ, Homberg U (1984) Ocellar interneurons in the honeybee - characteristics of spiking l-neurons. J Comp Physiol A 155:151–160

    Article  Google Scholar 

  • Meinertzhagen IA, Pyza E (1999) Neurotransmitter regulation of circadian structural changes in the fly’s visual system. Microsc Res Techniq 45:96–105

    Article  CAS  Google Scholar 

  • Mizunami M (1995) Functional diversity of neural organization in insect ocellar systems. Vis Res 35:443–452

    Article  PubMed  CAS  Google Scholar 

  • Moore D (2001) Honey bee circadian clocks: behavioral control from individual workers to whole-colony rhythms. J Insect Physiol 47:843–857

    Article  CAS  Google Scholar 

  • Moore D, Angel JE, Cheeseman IM, Fahrbach SE, Robinson GE (1998) Timekeeping in the honey bee colony: integration of circadian rhythms and division of labor. Behav Ecol Sociobiol 43:147–160

    Article  Google Scholar 

  • Morin LP (1999) Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med 31:12–33

    PubMed  CAS  Google Scholar 

  • Moritz RFA, Sakofski F (1991) The role of the queen in circadian rhythems of honeybees (Apis mellifera L.). Behav Ecol Sociobiol 29:361–365

    Article  Google Scholar 

  • Nakamura TJ, Moriya T, Inoue S, Shimazoe T, Watanabe S, Ebihara S, Shinohara K (2005) Estrogen differentially regulates expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J Neurosci Res 82:622–630

    Article  PubMed  CAS  Google Scholar 

  • Ohashi K, Natori S, Kubo T (1997) Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L. Eur J Biochem 249:797–802

    Article  PubMed  CAS  Google Scholar 

  • Pankiw T, Page RE (2003) Effect of pheromones, hormones, and handling on sucrose response thresholds of honey bees (Apis mellifera L.). J Comp Physiol A 189:675–684

    Article  CAS  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, Desouza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based color-vision. J Comp Physiol A 170:23–40

    Article  PubMed  CAS  Google Scholar 

  • Perrin JS, Segall LA, Harbour VL, Woodside B, Amir S (2006) The expression of the clock protein PER2 in the limbic forebrain is modulated by the estrous cycle. Proc Nat Acad Sci USA 103:5591–5596

    Article  PubMed  CAS  Google Scholar 

  • Pophof B (2000) Octopamine modulates the sensitivity of silkmoth pheromone receptor neurons. J Comp Physiol A 186:307–313

    Article  PubMed  CAS  Google Scholar 

  • Renner M (1955) Ein Transozeanversuch zum Zeitsinn der Honigbiene. Naturwissenchaften 42:540–541

    Article  Google Scholar 

  • Robinson GE (1985) Effects of a juvenile hormone analogue on honey bee foraging behaviour and alarm pheromone production. J Insect Physiol 31:277–282

    Article  CAS  Google Scholar 

  • Robinson GE (1987) Modulation of alarm pheromone perception in the honey bee: evidence for division of labor based on hormonally regulated response thresholds. J Comp Physiol A 160:613–619

    Article  CAS  Google Scholar 

  • Robinson GE, Heuser LM, Le Conte Y, Lenquette F, Hollingworth RM (1999) Neurochemicals aid bee nestmate recognition. Nature 399:534–535

    Article  CAS  Google Scholar 

  • Roeder T (1999) Octopamine in invertebrates. Prog Neurobiol 59:533–561

    Article  PubMed  CAS  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477

    Article  PubMed  CAS  Google Scholar 

  • Roeder T, Degen J, Gewecke M (1998) Epinastine, a highly specific antagonist of insect neural octopamine receptors. Eur J Pharmacol 349:171–177

    Article  PubMed  CAS  Google Scholar 

  • Rubin R, Shemesh Y, Cohen M, Elgavish S. Robertson HM, Bloch G (2006) Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 16:1352–1365

    Article  PubMed  CAS  Google Scholar 

  • Saifullah ASM, Tomioka K (2002) Serotonin sets the day state in the neurons that control coupling between the optic lobe circadian pacemakers in the cricket Gryllus bimaculatus. J Exp Biol 205:1305–1314

    PubMed  CAS  Google Scholar 

  • Sasagawa H, Sasaki M, Okada I (1989) Hormonal-control of the division of labor in adult honeybees (Apis mellifera L). 1. Effect of methoprene on corpora allata and hypopharyngeal gland, and its alpha-glucosidase activity. Appl Entomol Zool 24:66–77

    CAS  Google Scholar 

  • Scheiner R, Pluckhahn S, Oney B, Blenau W, Erber J (2002) Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. Behav Brain Res 136:545–553

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Robinson GE (1999) Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in antennal lobes and age-related changes in the mushroom bodies. J Comp Physiol A 184:481–488

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Robinson GE (2001) Octopamine influences division of labor in honey bee colonies, J Comp Physiol A 187:53–61

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Barron AB, Robinson GE (2002a). A role for octopamine in honey bee division of labor. Brain Behav Evol 60:350–359

    Article  Google Scholar 

  • Schulz DJ, Sullivan JP, Robinson GE (2002b) Juvenile hormone and octopamine in the regulation of division of labor in honey bee colonies. Horm Behav 42:222–231

    Article  CAS  Google Scholar 

  • Schulz DJ, Elekonich MM, Robinson GE (2003) Biogenic amines in the antennal lobes and the initiation and maintenance of foraging behavior in honey bees. J Neurobiol 54:406–416

    Article  PubMed  CAS  Google Scholar 

  • Shimizu I, Kawai Y, Taniguchi M, Aoki S (2001) Circadian rhythm and cDNA cloning of the clock gene period in the honeybee Apis cerana japonica. Zool Sci 18:779–789

    Article  CAS  Google Scholar 

  • Sinakevitch I, Niwa M, Strausfeld NJ (2005) Octopamine-like immunoreactivity in the honey bee and cockroach: comparable organization in the brain and subesophageal ganglion. J Comp Neurol 488:233–254

    Article  PubMed  CAS  Google Scholar 

  • Spivak M, Masterman R, Ross R, Mesce KA (2003) Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. J Neurobiol 55:341–354

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3 edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Steenhard BM, Besharse JC (2000) Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine. J Neurosci 20:8572–8577

    PubMed  CAS  Google Scholar 

  • Stern M, Thompson KSJ, Zhou P, Watson DG, Midgley JM, Gewecke M, Bacon JP (1995) Octopaminergic neurons in the locust brain—morphological, biochemical and electrophysiological characterization of potential modulators of the visual-system. J Comp Physiol A 177:611–625

    Article  CAS  Google Scholar 

  • Stevenson PA, Dyakonova V, Rillich J, Schildberger K (2005) Octopamine and experience-dependent modulation of aggression in crickets. J Neurosci 25:1431–1441

    Article  PubMed  CAS  Google Scholar 

  • Su YF, Harden TK, Perkins JP (1980) Catecholamine-specific desensitization of adenylate-cyclase—evidence for a multistep process. J Biol Chem 255:7410–7419

    PubMed  CAS  Google Scholar 

  • Sullivan JP, Jassim O, Fahrbach SE, Robinson GE (2000) Juvenile hormone paces behavioral development in the adult worker honey bee. Horm Behav 37:1–14

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JP, Fahrbach SE, Harrison JF, Capaldi EA, Fewell JH, Robinson GE (2003) Juvenile hormone and division of labor in honey bee colonies: effects of allatectomy on flight behavior and metabolism. J Exp Biol 206:2287–2296

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Yokota S, Hara R, Kobayashi T, Akiyama M, Moriya T, Shibata S (2001) Physical and inflammatory stressors elevate circadian clock gene mPer1 mRNA levels in the paraventricular nucleus of the mouse. Endocrinology 142:4910–4917

    Article  PubMed  CAS  Google Scholar 

  • Terazono H, Mutoh T, Yamaguchi S, Kobayashi M, Akiyama M, Udo R, Ohdo S, Okamura H, Shibata S (2003) Adrenergic regulation of clock gene expression in mouse liver. Proc Nat Acad Sci USA 100:6795–6800

    Article  PubMed  CAS  Google Scholar 

  • Toma DP, Bloch G, Moore D, Robinson GE (2000) Changes in period mRNA levels in the brain and division of labor in honey bee colonies. Proc Nat Acad Sci USA 97:6914–6919

    Article  PubMed  CAS  Google Scholar 

  • Unoki S, Matsumoto Y, Mizunami M (2005) Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study. Eur J Neurosci 22:1409–1416

    Article  PubMed  Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  • Wagener-Hulme C, Kuehn JC, Schulz DJ, Robinson GE (1999) Biogenic amines and division of labor in honey bee colonies. J Comp Physiol A 184:471–479

    Article  PubMed  CAS  Google Scholar 

  • Williams JA, Sehgal A (2001) Molecular components of the circadian system in Drosophila. Ann Rev Physiol 63:729–755

    Article  CAS  Google Scholar 

  • Winer J, Jung CKS, Shackel I, Williams PM (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:41–49

    Article  PubMed  CAS  Google Scholar 

  • Withers GS, Fahrbach SE, Robinson GE (1995) Effects of experience and juvenile hormone on the organization of the mushroom bodies of honey bees. J Neurobiol 26:130–144

    Article  PubMed  CAS  Google Scholar 

  • Wyatt GR, Davey KG (1996). Cellular and molecular actions of juvenile hormone. II. Roles of juvenile hormone in adult insects. Adv Insect Physiol 26:2–155

    Google Scholar 

  • Yellman C, Tao H, He B, Hirsh J (1997) Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proc Nat Acad Sci USA 94:4131–4136

    Article  PubMed  CAS  Google Scholar 

  • Yerushalmi S, Bodenhaimer S, Bloch G (2006) Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J Exp Biol 209:1044–1051

    Article  PubMed  Google Scholar 

  • Yuan Q, Lin F, Zheng X, Sehgal A (2005) Serotonin modulates circadian entrainment in Drosophila. Neuron 47:115–127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rafi Nir and Allan Ross for expert assistance with bees; Mira Cohen, Rachel Saf, and Sara O’Brien for technical assistance in the laboratory; Bryan A. White for gracious use of the ABI 5700 real-time PCR machine. Thanks to Gene E. Robinson for support, helpful discussions, and for reading an earlier version of this manuscript, Joseph P. Sullivan for performing the allaetectomy operations, Dave J. Schulz for performing HPLC analyses for biogenic amine levels, and two anonymous reviewers for helpful comments on a previous version of this manuscript. Financial support was provided by NIH grant GM57196 to GER, the National Institute for Psychobiology in Israel grant number 036.7207 to GB, and the Israel–US Binational Science Foundation # 2001022 to GB and GER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Bloch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, G., Meshi, A. Influences of octopamine and juvenile hormone on locomotor behavior and period gene expression in the honeybee, Apis mellifera . J Comp Physiol A 193, 181–199 (2007). https://doi.org/10.1007/s00359-006-0179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0179-5

Keywords

Navigation