Skip to main content

Advertisement

Log in

Effect of remote ischemic preconditioning on clinical outcomes in patients undergoing coronary artery bypass graft surgery (ERICCA): rationale and study design of a multi-centre randomized double-blinded controlled clinical trial

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Novel cardioprotective strategies are required to improve clinical outcomes in high risk patients undergoing coronary artery bypass graft (CABG) ± valve surgery. Remote ischemic preconditioning (RIC), in which brief episodes of non-lethal ischemia and reperfusion are applied to the arm or leg, has been demonstrated to reduce perioperative myocardial injury following CABG ± valve surgery. Whether RIC can improve clinical outcomes in this setting is unknown and is investigated in the effect of remote ischemic preconditioning on clinical outcomes (ERICCA) trial in patients undergoing CABG surgery. (ClinicalTrials.gov Identifier: NCT01247545).

Methods

The ERICCA trial is a multicentre randomized double-blinded controlled clinical trial which will recruit 1,610 high-risk patients (Additive Euroscore ≥ 5) undergoing CABG ± valve surgery using blood cardioplegia via 27 tertiary centres over 2 years. The primary combined endpoint will be cardiovascular death, non-fatal myocardial infarction, coronary revascularization and stroke at 1 year. Secondary endpoints will include peri-operative myocardial and acute kidney injury, intensive care unit and hospital stay, inotrope score, left ventricular ejection fraction, changes of quality of life and exercise tolerance. Patients will be randomized to receive after induction of anesthesia either RIC (4 cycles of 5 min inflation to 200 mmHg and 5 min deflation of a blood pressure cuff placed on the upper arm) or sham RIC (4 cycles of simulated inflations and deflations of the blood pressure cuff).

Implications

The findings from the ERICCA trial have the potential to demonstrate that RIC, a simple, non-invasive and virtually cost-free intervention, can improve clinical outcomes in higher-risk patients undergoing CABG ± valve surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Biancari F, Kangasniemi OP, Mahar MA, Rasinaho E, Satomaa A, Tiozzo V, Niemela M, Lepojarvi M (2009) Changing risk of patients undergoing coronary artery bypass surgery. Interact Cardiovasc Thorac Surg 8:40–44

    Article  PubMed  Google Scholar 

  2. Kathiresan S, Servoss SJ, Newell JB, Trani D, MacGillivray TE, Lewandrowski K, Lee-Lewandrowski E, Januzzi JL Jr (2004) Cardiac troponin T elevation after coronary artery bypass grafting is associated with increased one-year mortality. Am J Cardiol 94:879–881

    Article  PubMed  CAS  Google Scholar 

  3. Brener SJ, Lytle BW, Schneider JP, Ellis SG, Topol EJ (2002) Association between CK-MB elevation after percutaneous or surgical revascularization and three-year mortality. J Am Coll Cardiol 40:1961–1967

    Article  PubMed  CAS  Google Scholar 

  4. Karkouti K, Wijeysundera DN, Yau TM, Callum JL, Cheng DC, Crowther M et al (2009) Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation 119:495–502

    Article  PubMed  Google Scholar 

  5. Whitaker DC, Stygall J, Newman SP (2002) Neuroprotection during cardiac surgery: strategies to reduce cognitive decline. Perfusion 17(Suppl):69–75

    Article  PubMed  Google Scholar 

  6. Kathiresan S, Servoss SJ, Newell JB, Trani D, MacGillivray TE, Lewandrowski K et al (2004) Cardiac troponin T elevation after coronary artery bypass grafting is associated with increased one-year mortality. Am J Cardiol 94:879–881

    Article  PubMed  CAS  Google Scholar 

  7. Lehrke S, Steen H, Sievers HH, Peters H, Opitz A, Muller-Bardorff M et al (2004) Cardiac troponin T for prediction of short- and long-term morbidity and mortality after elective open heart surgery. Clin Chem 50:1560–1567

    Article  PubMed  CAS  Google Scholar 

  8. Mohammed AA, Agnihotri AK, van Kimmenade RR, Martinez-Rumayor A, Green SM, Quiroz R et al (2009) Prospective, comprehensive assessment of cardiac troponin T testing after coronary artery bypass graft surgery. Circulation 120:843–850

    Article  PubMed  CAS  Google Scholar 

  9. Fellahi JL, Gue X, Richomme X, Monier E, Guillou L, Riou B (2003) Short- and long-term prognostic value of postoperative cardiac troponin I concentration in patients undergoing coronary artery bypass grafting. Anesthesiology 99:270–274

    Article  PubMed  CAS  Google Scholar 

  10. Croal BL, Hillis GS, Gibson PH, Fazal MT, El Shafei H, Gibson G et al (2006) Relationship between postoperative cardiac troponin I levels and outcome of cardiac surgery. Circulation 114:1468–1475

    Article  PubMed  CAS  Google Scholar 

  11. Muehlschlegel JD, Perry TE, Liu KY, Nascimben L, Fox AA, Collard CD et al (2009) Troponin is superior to electrocardiogram and creatinine kinase MB for predicting clinically significant myocardial injury after coronary artery bypass grafting. Eur Heart J 30:1574–1583

    Article  PubMed  CAS  Google Scholar 

  12. Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT (1998) Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med 128:194–203

    PubMed  CAS  Google Scholar 

  13. Suen WS, Mok CK, Chiu SW, Cheung KL, Lee WT, Cheung D et al (1998) Risk factors for development of acute renal failure (ARF) requiring dialysis in patients undergoing cardiac surgery. Angiology 49:789–800

    Article  PubMed  CAS  Google Scholar 

  14. Rosner MH, Okusa MD (2006) Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol 1:19–32

    Article  PubMed  Google Scholar 

  15. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J (1998) Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 104:343–348

    Article  PubMed  CAS  Google Scholar 

  16. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P et al (2004) Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 15:1597–1605

    Article  PubMed  CAS  Google Scholar 

  17. Heusch G, Kleinbongard P, Böse D, Levkau B, Haude M, Schulz R, Erbel R (2009) Coronary microembolization: from bedside to bench and back to bedside. Circulation 120(18):1822–1836

    Article  PubMed  Google Scholar 

  18. Wheatley DJ (2003) Protecting the damaged heart during coronary surgery. Heart 89:367–368

    Article  PubMed  CAS  Google Scholar 

  19. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischaemic ventricular dysfunction. Circulation 66(6):1146–1149

    Article  PubMed  CAS  Google Scholar 

  20. Ito H (2006) No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat Clin Pract Cardiovasc Med 3(9):499–506

    Article  PubMed  Google Scholar 

  21. Manning AS, Hearse DJ (1984) Reperfusion induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol 16(6):497–518

    Article  PubMed  CAS  Google Scholar 

  22. Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300

    Article  PubMed  CAS  Google Scholar 

  23. Hearse DJ, Humphrey SM, Chain EB (1973) Abrupt reoxygenation of the anoxic potassium arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol 5(4):395–407

    Article  PubMed  CAS  Google Scholar 

  24. Lemasters JJ, Bond JM, Chacon E et al (1996) The pH paradox in ischaemia-reperfusion injury to cardiac myocytes. EXS 76:99–114

    PubMed  CAS  Google Scholar 

  25. Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61(3):481–497

    Article  PubMed  CAS  Google Scholar 

  26. Jonassen AK, Sack MN, Mjos OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89(12):1191–1198

    Article  PubMed  CAS  Google Scholar 

  27. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105(2):151–154

    Article  PubMed  Google Scholar 

  28. Hausenloy DJ, Baxter G, Bell R, Bøtker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105(6):677–686

    Article  PubMed  Google Scholar 

  29. Schwartz Longacre L, Kloner RA, Arai AE, Baines CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Vander Heide RS, Vinten-Johansen J, Yellon DM, National Heart, Lung, and Blood Institute, National Institutes of Health (2011) New horizons in cardioprotection: recommendations from the 2010 National Heart, Lung, and Blood Institute Workshop. Circulation 124(10):1172–1179

    Google Scholar 

  30. Zhao ZQ, Corvera JS, Halkos ME et al (2003) Inhibition of myocardial injury by ischaemic postconditioning during reperfusion: comparison with ischaemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579–H588

    PubMed  CAS  Google Scholar 

  31. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899

    PubMed  CAS  Google Scholar 

  32. Hausenloy DJ, Yellon DM (2008) Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79:377–386

    Article  PubMed  CAS  Google Scholar 

  33. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA et al (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106:2881–2883

    Article  PubMed  CAS  Google Scholar 

  34. Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E et al (2007) Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 370:575–579

    Article  PubMed  Google Scholar 

  35. Venugopal V, Hausenloy DJ, Ludman A, Di Salvo CM, Kolvekar S, Yap J et al (2009) Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold blood cardioplegia: a randomised controlled trial. Heart 95:1567–1571

    Google Scholar 

  36. Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J et al (2006) Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 47:2277–2282

    Article  PubMed  Google Scholar 

  37. Thielmann M, Kottenberg E, Boengler K, Raffelsieper C, Neuhaeuser M, Peters J, Jakob H, Heusch G (2010) Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with crystalloid cardioplegic arrest. Basic Res Cardiol 105(5):657–664

    Article  PubMed  CAS  Google Scholar 

  38. Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, Akthar AM et al (2007) Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation 116:I98–I105

    Article  PubMed  Google Scholar 

  39. Walsh SR, Boyle JR, Tang TY, Sadat U, Cooper DG, Lapsley M et al (2009) Remote ischemic preconditioning for renal and cardiac protection during endovascular aneurysm repair: a randomized controlled trial. J Endovasc Ther 16:680–689

    Article  PubMed  Google Scholar 

  40. Hu S, Dong HL, Li YZ, Luo ZJ, Sun L, Yang QZ et al (2010) Effects of remote ischemic preconditioning on biochemical markers and neurologic outcomes in patients undergoing elective cervical decompression surgery: a prospective randomized controlled trial. J Neurosurg Anesthesiol 22(2):157

    Google Scholar 

  41. Hoole SP, Heck PM, Sharples L, Khan SN, Duehmke R, Densem CG et al (2009) Cardiac remote ischemic preconditioning in coronary stenting (CRISP Stent) study: a prospective, randomized control trial. Circulation 119:820–827

    Article  PubMed  Google Scholar 

  42. Botker HE, Kharbanda RK, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, Munk K, Anderson NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, Sorensen HF, Redington AN, Nielsen TT (2010) Prehospital remote ischaemic conditioning increases myocardial salvage in acute myocardial infarction. Lancet 375(9716):727–734

    Google Scholar 

  43. Thygesen K, Alpert JS, White HD, Jaffe AS, Apple FS, Galvani M et al (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653

    Article  PubMed  Google Scholar 

  44. Ko WJ, Lin CY, Chen RJ, Wang SS, Lin FY, Chen YS (2002) Extracorporeal membrane oxygenation support for adult postcardiotomy cardiogenic shock. Ann Thorac Surg 73:538–545

    Article  PubMed  Google Scholar 

  45. Haase M, Bellomo R, Devarajan P, Ma Q, Bennett MR, Mockel M et al (2009) Novel biomarkers early predict the severity of acute kidney injury after cardiac surgery in adults. Ann Thorac Surg 88:124–130

    Article  PubMed  Google Scholar 

  46. Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R et al (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol 3:665–673

    Article  PubMed  Google Scholar 

  47. Fiorina C, Vizzardi E, Lorusso R, Maggio M, De Cicco G, Nodari S et al (2007) The 6-min walking test early after cardiac surgery. Reference values and the effects of rehabilitation programme. Eur J Cardiothorac Surg 32:724–729

    Article  PubMed  Google Scholar 

  48. Dunning J, Waller JR, Smith B, Pitts S, Kendall SW, Khan K (2008) Coronary artery bypass grafting is associated with excellent long-term survival and quality of life: a prospective cohort study. Ann Thorac Surg 85:1988–1993

    Article  PubMed  Google Scholar 

  49. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ et al (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360:961–972

    Article  PubMed  CAS  Google Scholar 

  50. Lee MS, Kapoor N, Jamal F, Czer L, Aragon J, Forrester J et al (2006) Comparison of coronary artery bypass surgery with percutaneous coronary intervention with drug-eluting stents for unprotected left main coronary artery disease. J Am Coll Cardiol 47:864–870

    Article  PubMed  CAS  Google Scholar 

  51. Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G et al (2008) Long-term benefit of postconditioning. Circulation 117:1037–1044

    Article  PubMed  CAS  Google Scholar 

  52. Birnbaum Y, Hale SL, Kloner RA (1997) Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96:1641–1646

    PubMed  CAS  Google Scholar 

  53. Ren C, Gao X, Steinberg GK, Zhao H (2008) Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience 151:1099–1103

    Article  PubMed  CAS  Google Scholar 

  54. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ (2005) Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol 46:450–456

    Article  PubMed  CAS  Google Scholar 

  55. Li L, Luo W, Huang L, Zhang W et al (2010) Remote perconditioning reduces myocardial injury in adult valve replacement: a randomized controlled trial. J Surg Res 164(1):e21–e26

    Article  PubMed  Google Scholar 

  56. Hong DM, Mint JJ, Kim JH et al (2010) The effect of remote ischaemic preconditioning on myocardial injury in patients undergoing off-pump coronary artery bypass graft surgery. Anaesth Intensive Care 38(5):924–929

    PubMed  CAS  Google Scholar 

  57. Iliodromitis EK, Kyrzopoulos S, Paraskevaidis IA et al (2006) Increased C reactive protein and cardiac enzyme levels after coronary stent implantation. Is there protection by remote ischaemic preconditioning? Heart 92:1821–1826

    Article  PubMed  CAS  Google Scholar 

  58. Rahman IA, Mascaro JG, Steeds et al (2010) Remote ischaemic preconditioning in human coronary artery bypass surgery: from promise to disappointment? Circulation 122(11 Suppl):S53–S59

    Article  PubMed  Google Scholar 

  59. Karuppasamy P, Chaubey S, Dew T, Musto R, Sherwood R, Desai J, John L, Shah AM, Marber MS, Kunst G (2011) Remote intermittent ischemia before coronary artery bypass graft surgery: a strategy to reduce injury, inflammation? Basic Res Cardiol 106(4):511–519

    Article  PubMed  CAS  Google Scholar 

  60. Peters J (2011) Remote ischaemic preconditioning of the heart: remote questions, remote importance, or remote preconditions? Basic Res Cardiol 106(4):507–509

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to the National Institute of Health Research, the Medical Research Council and the British Heart Foundation who have kindly agreed to fund the ERICCA trial with an Efficacy and Mechanism Evaluation research grant: Reference number 09/100/05. The Efficacy and Mechanism Evaluation programme is funded by the MRC and NIHR and managed by the NIHR Evaluation, Trials and Studies Coordinating Centre (NETSCC). The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the MRC, NHS, NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Derek M. Yellon.

Additional information

D. J. Hausenloy and L. Candilio are joint first authors.

Research collaborators

Research collaborators

Mr. Geoff Berg, Golden Jubilee Hospital, Mr. Moninder Bhabra, Wolverhampton Hospital, New Cross Hospital, Mr. Chris Blauth, St Thomas’ Hospital, Mr. Norman Briffa, Northern General Hospital, Prof. John Dark, The Freeman Hospital, Mr. Jatin Desai, Kings College London Hospital, Mr. Steven Griffin, Castle Hill Hospital, Marjan Jahangiri, St George’s Hospital, Mr. David Jenkins, Papworth Hospital, Prof. Daniel Keenan, Manchester Royal Infirmary, Mr. Shyam Kolvekar, Heart Hospital, Mr. Dheeraj Mehta, Cardiff University Hosptial, Prof. John Pepper, Royal Brompton Hospital, Mr. Renzo Pessotto, Edinburgh Royal Infirmary, Mr. Mario Petrou, John Radcliffe Hospital, Mr. Prakash Punjabi, Hammersmith Hospital, Mr. David Richens, Trent Cardiac Centre, Mr. Andrew Ritchie, Essex Cardiothoracic Centre, Mr. André Simon, Harefield Hospital, Prof. Tom Spyt, Glenfield Hospital, Mr. Augustine Tang, Blackpool Victoria Hospital, Mr. Uday Trivedi, Royal Sussex County Hospital, Mr. Jonathan Unsworth-White, Derriford Hospital, Mr. Rakesh Uppal, London Chest Hospital and St Barts’ Hospital, Prof. Nizar Yonan, Wythenshawe Hospital, Mr. Aprim Youhana, Morriston Hospital.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausenloy, D.J., Candilio, L., Laing, C. et al. Effect of remote ischemic preconditioning on clinical outcomes in patients undergoing coronary artery bypass graft surgery (ERICCA): rationale and study design of a multi-centre randomized double-blinded controlled clinical trial. Clin Res Cardiol 101, 339–348 (2012). https://doi.org/10.1007/s00392-011-0397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-011-0397-x

Keywords

Navigation