Skip to main content
Log in

Adrenomedullin limits reperfusion injury in experimental myocardial infarction

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Adrenomedullin (AM) is a vascular–derived polypeptide that exerts numerous actions in cardiovascular homeostasis. Recent studies have demonstrated a cytoprotective action of exogenously applied or genetically over–expressed AM in experimental myocardial infarction. The present studies were undertaken to test the hypothesis that AM exerts its effects through direct augmentation of NO generation in the myocardium during early reperfusion. Rat isolated hearts underwent 35 min left coronary artery occlusion followed by 120 min reperfusion. Infarct size (as percentage of ischaemic riskzone) was determined by Evans’ blue and tetrazolium double staining. AM 1 nM administered 5 min prior to and during the first 15 min of ischaemia did not significantly influence infarct size. However, the same concentration of AM given during the last 5 min ischaemia and first 15 min of reperfusion significantly limited infarct size (AM reperfusion 15.9 ± 3.5% vs control 31.4 ± 2.1%, P < 0.01). AM at reperfusion improved coronary flow and LV contractility. The protective effects of adrenomedullin were abolished in the presence of the NO synthase inhibitor, L–NAME 100 µM (infarct size 24.6 ± 5.7%, P > 0.05 vs control). AM treatment at reperfusion was associated with augmented phosphorylation of the pro–survival kinase, Akt, determined by immunoblotting of tissue sampled 30 min following reperfusion. These studies provide the first evidence that AM exerts its cytoprotective action specifically during early reperfusion through a NO–dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

= adrenomedullin

CFR:

= coronary flow rate

L–NAME:

= Nω–nitro–L–arginine methyl ester

NO:

= nitric oxide

NOS:

= nitric oxide synthase

References

  1. Baxter GF, Mocanu MM, Brar BK, Latchman DS, Yellon DM (2001) Cardioprotective effects of transforming growth factor–beta1 during early reoxygenation or reperfusion are mediated by p42/p44 MAPK. J Cardiovasc Pharmacol 38:930–939

    Article  PubMed  Google Scholar 

  2. Baxter GF, Yellon DM (2003) Current trends and controversies in ischemiareperfusion research – meeting report of the Hatter Institute 3rd International Workshop on Cardioprotection. Basic Res Cardiol 98:133–136

    Article  PubMed  Google Scholar 

  3. Bell RM, Yellon DM (2003) Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS. J Mol Cell Cardiol 35:185–193

    Article  PubMed  Google Scholar 

  4. D’Souza SP, Yellon DM, Martin C, Schulz R, Heusch G, Onody A, Ferdinandy P, Baxter GF (2003) B–type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol Heart Circ Physio 284:H1592–H1600

    Google Scholar 

  5. Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial andcytosolic NAD+ and is a causative eventin the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276:2571–2575

    Article  Google Scholar 

  6. Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia–reperfusion injury and preconditioning. Br J Pharmacol 138:532–543

    Article  PubMed  Google Scholar 

  7. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium–derived nitric oxide production by the protein kinase Akt. Nature 399:597–601

    Article  PubMed  Google Scholar 

  8. Hamid SA, Baxter GF (2005) Adrenomedullin: regulator of systemic and cardiac homeostasis in acute myocardial infarction. Pharmacol Ther 105:95–112

    Article  PubMed  Google Scholar 

  9. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55:534–543

    Article  PubMed  Google Scholar 

  10. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia–reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)–pathway. Cardiovasc Res 61:448–460

    Article  PubMed  Google Scholar 

  11. Hayakawa H, Hirata Y, Kakoki M, Suzuki Y, Nishimatsu H, Nagata D, Suzuki E, Kikuchi K, Nagano T, Kangawa K, Matsuo H, Sugimoto T, Omata M (1999) Role of nitric oxide–cGMP pathway in adrenomedullin–induced vasodilation in the rat. Hypertension 33:689–693

    PubMed  Google Scholar 

  12. Kato J, Kitamura K, Kangawa K, Eto T(1995) Receptors for adrenomedullin in human vascular endothelial cells. Eur J Pharmacol 289:383–385

    Article  PubMed  Google Scholar 

  13. Kato K, Yin H, Agata J, Yoshida H, Chao L, Chao J (2003) Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J Physiol Heart Circ Physiol 285:H1506–H1514

    PubMed  Google Scholar 

  14. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T(1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys ResCommun 192:553–560

    Article  Google Scholar 

  15. Kobara M, Tasumi T, Takeda M, Mano A, Yamanaka S, Shirasihi J, Keira N, Matoba S, Asayama J, Nakagwa M (2003) The dual effects of nitric oxide synthase inhibitorson ischemia–reperfusion injury in rat hearts. Basic Res Cardiol 98:319–328

    Article  PubMed  Google Scholar 

  16. Kobayashi K, Kitamura K, Hirayama N, Date H, Kashiwagi T, Ikushima I, Hanada Y, Nagatomo Y, Takenaga M, Ishikawa T, Imamura T, Koiwaya Y, Eto T (1996)Increased plasma adrenomedullin in acute myocardial infarction. Am Heart J 131:676–680

    Article  PubMed  Google Scholar 

  17. Kureishi Y, Kobayashi S, Nishimura J, Nakano T, Kanaide H (1995) Adrenomedullin decreases both cytosolic Ca2+ concentration and Ca(2+)–sensitivity in pig coronary arterial smooth muscle. Biochem Biophys Res Commun 212:572–579

    Article  PubMed  Google Scholar 

  18. Nagaya N, Nishikimi T, Yoshihara F, Horio T, Morimoto A, Kangawa K (2000) Cardiac adrenomedullin gene expression and peptide accumulation after acute myocardial infarction in rats. Am J Physiol Regul Integr Comp Physiol 278:R1019–R1026

    PubMed  Google Scholar 

  19. Nakamura R, Kato J, Kitamura K, Onitsuka H, Imamura T, Cao Y, Marutsuka K, Asada Y, Kangawa K, Eto T(2004) Adrenomedullin administration immediately after myocardial infarction ameliorates progression of heart failure in rats. Circulation. Jul 27 110 (4):426–431

    Article  PubMed  Google Scholar 

  20. Oie E, Vinge LE, Yndestad A, Sandberg C, Grogaard HK, Attramadal H (2000) Induction of a myocardial adrenomedullin signaling system during ischemic heart failure in rats. Circulation 101:415–422

    PubMed  Google Scholar 

  21. Okumura H, Nagaya N, Itoh T, Okano I, Hino J, Mori K, Tsukamoto Y, Ishibashi–Ueda H, Miwa S, Tambara K, Toyokuni S, Yutani C, Kangawa K (2004)Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3–kinase/Akt–dependent pathway. Circulation 109:242–248

    Article  PubMed  Google Scholar 

  22. Piper HM, Abdallah Y, Schafer C (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371

    Article  PubMed  Google Scholar 

  23. Schafer A, Burkhardt M, Vollkommer T, Bauersachs J, Munzel T, Walter U, Smolenski A (2003) Endotheliumdependent and –independent relaxation and VASP serines 157/239 phosphorylation by cyclic nucleotide–elevating vasodilators in rat aorta. Biochem Pharmacol 65:397–405

    Article  PubMed  Google Scholar 

  24. Schulz R, Kelm M, Heusch G (2004) Nitricoxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413

    Article  PubMed  Google Scholar 

  25. Stangl K, Dschietzig T, Richter C, Stangl V, Bartsch C, Zurbrugg HR, Pregla R, Baumann G, Felix SB, Laule M (2002) Cessation of pulmonary and coronary secretion of adrenomedullin peptides in the progression of human heart failure. Horm Metab Res 34:81–86

    PubMed  Google Scholar 

  26. Sugo S, Minamino N, Shoji H, Kangawa K, Kitamura K, Eto T, Matsuo H (1994)Production and secretion of adrenomedullin from vascular smooth muscle cells: augmented production by tumor necrosis factor–alpha. Biochem Biophys Res Commun 203:719–726

    Article  PubMed  Google Scholar 

  27. Yang XM, Krieg T, Cui L, Downey JM, Cohen MV (2004) NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol 36:411–421

    Article  PubMed  Google Scholar 

  28. Yellon DM, Baxter GF (1999) Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med 9:245–249

    Article  PubMed  Google Scholar 

  29. Yin H, Chao L, Chao J (2004) Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt–GSK signaling. Hypertension 43:109–116

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hamid PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamid, S.A., Baxter, G.F. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res Cardiol 100, 387–396 (2005). https://doi.org/10.1007/s00395-005-0538-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0538-3

Key words

Navigation