Skip to main content

Advertisement

Log in

Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

In the majority of studies, metformin has been demonstrated to cardioprotect diabetic patients, the mechanism of which is unclear. We hypothesized that metformin cardioprotects the ischemic heart through the Akt-mediated inhibition of mitochondrial permeability transition pore (mPTP) opening.

Materials and methods

Isolated perfused hearts from normoglycemic Wistar or from diabetic Goto-Kakizaki (GK) rats (N ≥ 6/group) were subjected to 35 min ischemia and 120 min of reperfusion. Metformin (50 µmol/l) was added for 15 min at reperfusion, alone or with LY294002 (15 µmol/l), a PI3K inhibitor. Infarct size and Akt phosphorylation were measured. Furthermore, the effect of metformin on mPTP opening in adult cardiomyocytes isolated from both strains was determined.

Results

Metformin reduced infarct size in both Wistar (35 ± 2.7% metformin vs. 62 ± 3.0% control: P < 0.05) and GK hearts (43 ± 4.7% metformin vs. 60 ± 3.8% control: P < 0.05). This protection was accompanied by a significant increase in Akt phosphorylation. LY294002 abolished the metformin-induced Akt phosphorylation and the infarct-limiting effect of metformin in Wistar (61 ± 6.7% metformin + LY294002 vs. 35 ± 2.7% metformin: P < 0.05) and GK rats (56 ± 5.7% metformin + LY294002 vs. 43 ± 4.7% metformin: P < 0.05). In addition, metformin significantly inhibited mPTP opening and subsequent rigor contracture in both Wistar and GK cardiomyocytes subjected to oxidative stress, in a LY-sensitive manner.

Conclusions

We report that metformin given at the time of reperfusion reduces myocardial infarct size in both the non-diabetic and diabetic heart and this protective effect is mediated through PI3K and is associated with Akt phosphorylation. Furthermore, cardioprotection appears to be executed through a PI3K-mediated inhibition of mPTP opening. These findings may explain in part the cardioprotective properties of metformin observed in clinical studies of diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:854–865

  2. Abdallah Y, Gkatzoflia A, Gligorievski D, Kasseckert S, Euler G, Schluter KD, Schafer M, Piper HM, Schafer C (2006) Insulin protects cardiomyocytes against reoxygenation-induced hypercontracture by a survival pathway targeting SR Ca2+ storage. Cardiovasc Res 70:346–353

    Article  PubMed  CAS  Google Scholar 

  3. Alserius T, Hammar N, Nordqvist T, Ivert T (2006) Risk of death or acute myocardial infarction 10 years after coronary artery bypass surgery in relation to type of diabetes. Am Heart J 152:599–605

    Article  PubMed  Google Scholar 

  4. An D, Kewalramani G, Chan JK, Qi D, Ghosh S, Pulinilkunnil T, Abrahani A, Innis SM, Rodrigues B (2006) Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia 49:2174–2184

    Article  PubMed  CAS  Google Scholar 

  5. Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111:194–197

    Article  PubMed  CAS  Google Scholar 

  6. Bailey CJ, Turner RC (1996) Metformin. N Engl J Med 334:574–579

    Article  PubMed  CAS  Google Scholar 

  7. Batandier C, Guigas B, Detaille D, El Mir M, Fontaine E, Rigoulet M, Leverve XM (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38:33–42

    Article  PubMed  CAS  Google Scholar 

  8. Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M (2005) PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 69:178–185

    Article  PubMed  CAS  Google Scholar 

  9. Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhausl W, Furnsinn C (2004) Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53:1052–1059

    Article  PubMed  CAS  Google Scholar 

  10. Calafiore AM, Di Mauro M, Di Giammarco G, Contini M, Vitolla G, Iaco AL, Canosa C, D’Alessandro S (2003) Effect of diabetes on early and late survival after isolated first coronary bypass surgery in multivessel disease. J Thorac Cardiovasc Surg 125:144–154

    Article  PubMed  Google Scholar 

  11. Charlon V, Boucher F, Mouhieddine S, de Leiris JD (1988) Reduction of myocardial infarct size by metformin in rats submitted to permanent left coronary artery ligation. Diabete Metab 14:591–595

    Google Scholar 

  12. Davidson SM, Hausenloy D, Duchen MR, Yellon DM (2006) Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol 38:414–419

    Article  PubMed  CAS  Google Scholar 

  13. De Giorgi F, Lartigue L, Bauer MK, Schubert A, Grimm S, Hanson GT, Remington SJ, Youle RJ, Ichas F (2002) The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. FASEB J 16:607–609

    PubMed  CAS  Google Scholar 

  14. Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N, Leverve X (2005) Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 54:2179–2187

    Article  PubMed  CAS  Google Scholar 

  15. El Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228

    Article  PubMed  CAS  Google Scholar 

  16. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–98

    PubMed  CAS  Google Scholar 

  17. Guigas B, Detaille D, Chauvin C, Batandier C, De Oliveira F, Fontaine E, Leverve X (2004) Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J 382:877–884

    Article  PubMed  CAS  Google Scholar 

  18. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234

    Article  PubMed  CAS  Google Scholar 

  19. Hausenloy DJ, Yellon DM (2003) The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 35:339–341

    Article  PubMed  CAS  Google Scholar 

  20. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia–reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61:448–460

    Article  PubMed  CAS  Google Scholar 

  21. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55:534–543

    Article  PubMed  CAS  Google Scholar 

  22. Hausenloy D, Mocanu M, Yellon D (2004) Cross-talk between the survival kinases during reperfusion in ischaemic preconditioning. Cardiovasc J S Afr 15:S11

    CAS  Google Scholar 

  23. Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR (2004) Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 287:H841–H849

    Article  PubMed  CAS  Google Scholar 

  24. Huser J, Blatter LA (1999) Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem J 343(Pt 2):311–317

    Article  PubMed  CAS  Google Scholar 

  25. Huser J, Rechenmacher CE, Blatter LA (1998) Imaging the permeability pore transition in single mitochondria. Biophys J 74:2129–2137

    Article  PubMed  CAS  Google Scholar 

  26. Jacobson J, Duchen MR (2002) Mitochondrial oxidative stress and cell death in astrocytes—requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 115:1175–1188

    PubMed  CAS  Google Scholar 

  27. Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524

    Article  PubMed  CAS  Google Scholar 

  28. Johnson JA, Majumdar SR, Simpson SH, Toth EL (2002) Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 25:2244–2248

    Article  PubMed  CAS  Google Scholar 

  29. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549

    PubMed  CAS  Google Scholar 

  30. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill MC, Zinman B, Viberti G (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443

    Article  PubMed  CAS  Google Scholar 

  31. Kao J, Tobis J, McClelland RL, Heaton MR, Davis BR, Holmes DR Jr., Currier JW (2004) Relation of metformin treatment to clinical events in diabetic patients undergoing percutaneous intervention. Am J Cardiol 93:1347–1350

    Article  PubMed  CAS  Google Scholar 

  32. Kawabata H, Ishikawa K (2003) Cardioprotection by metformin is abolished by a nitric oxide synthase inhibitor in ischemic rabbit hearts. Hypertens Res 26:107–110

    Article  PubMed  CAS  Google Scholar 

  33. Kim JS, Jin Y, Lemasters JJ (2006) Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia–reperfusion. Am J Physiol Heart Circ Physiol 290:H2024–H2034

    Article  PubMed  CAS  Google Scholar 

  34. King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431

    Article  PubMed  CAS  Google Scholar 

  35. Kirpichnikov D, McFarlane SI, Sowers JR (2002) Metformin: an update. Ann Intern Med 137:25–33

    PubMed  CAS  Google Scholar 

  36. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520

    Article  PubMed  CAS  Google Scholar 

  37. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E (2006) Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55:120–127

    Article  PubMed  CAS  Google Scholar 

  38. Legtenberg RJ, Houston RJ, Oeseburg B, Smits P (2002) Metformin improves cardiac functional recovery after ischemia in rats. Horm Metab Res 34:182–185

    Article  PubMed  CAS  Google Scholar 

  39. Malmberg K, Yusuf S, Gerstein HC, Brown J, Zhao F, Hunt D, Piegas L, Calvin J, Keltai M, Budaj A (2000) Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation 102:1014–1019

    PubMed  CAS  Google Scholar 

  40. Mathew V, Gersh BJ, Williams BA, Laskey WK, Willerson JT, Tilbury RT, Davis BR, Holmes DR Jr. (2004) Outcomes in patients with diabetes mellitus undergoing percutaneous coronary intervention in the current era: a report from the Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation 109:476–480

    Article  PubMed  Google Scholar 

  41. McGuire DK, Emanuelsson H, Granger CB, Magnus OE, Moliterno DJ, White HD, Ardissino D, Box JW, Califf RM, Topol EJ (2000) Influence of diabetes mellitus on clinical outcomes across the spectrum of acute coronary syndromes. Findings from the GUSTO-IIb study. GUSTO IIb investigators. Eur Heart J 21:1750–1758

    Article  PubMed  CAS  Google Scholar 

  42. McGuire DK, Newby LK, Bhapkar MV, Moliterno DJ, Hochman JS, Klein WW, Weaver WD, Pfisterer M, Corbalan R, Dellborg M, Granger CB, Van De WF, Topol EJ, Califf RM (2004) Association of diabetes mellitus and glycemic control strategies with clinical outcomes after acute coronary syndromes. Am Heart J 147:246–252

    Article  PubMed  CAS  Google Scholar 

  43. Mehenni H, Lin-Marq N, Buchet-Poyau K, Reymond A, Collart MA, Picard D, Antonarakis SE (2005) LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum Mol Genet 14:2209–2219

    Article  PubMed  CAS  Google Scholar 

  44. Mensah K, Mocanu MM, Yellon DM (2005) Failure to protect the myocardium against ischemia/reperfusion injury after chronic atorvastatin treatment is recaptured by acute atorvastatin treatment: a potential role for phosphatase and tensin homolog deleted on chromosome ten? J Am Coll Cardiol 45:1287–1291

    Article  PubMed  CAS  Google Scholar 

  45. Miki Oliveira PJ, Esteves TC, Seica R, Moreno AJ, Santos MS (2004) Calcium-dependent mitochondrial permeability transition is augmented in the kidney of Goto-Kakizaki diabetic rat. Diabetes Metab Res Rev 20:131–136

    Article  CAS  Google Scholar 

  46. Miki T, Miura T, Tanno M, Nishihara M, Naitoh K, Sato T, Takahashi A, Shimamoto K (2007) Impairment of cardioprotective PI3K–Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol 102(2):163–170

    Article  PubMed  CAS  Google Scholar 

  47. Oliveira PJ, Seica R, Coxito PM, Rolo AP, Palmeira CM, Santos MS, Moreno AJ (2003) Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett 554:511–514

    Article  PubMed  CAS  Google Scholar 

  48. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614

    Article  PubMed  CAS  Google Scholar 

  49. Ratner R, Goldberg R, Haffner S, Marcovina S, Orchard T, Fowler S, Temprosa M (2005) Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care 28:888–894

    Article  PubMed  Google Scholar 

  50. Ren J, Dominguez LJ, Sowers JR, Davidoff AJ (1999) Metformin but not glyburide prevents high glucose-induced abnormalities in relaxation and intracellular Ca2+ transients in adult rat ventricular myocytes. Diabetes 48:2059–2065

    Article  PubMed  CAS  Google Scholar 

  51. Rosen P, Wiernsperger NF (2006) Metformin delays the manifestation of diabetes and vascular dysfunction in Goto-Kakizaki rats by reduction of mitochondrial oxidative stress. Diabetes Metab Res Rev 22:323–330

    Article  PubMed  CAS  Google Scholar 

  52. Ruiz-Meana M, Garcia-Dorado D, Miro-Casas E, Abellan A, Soler-Soler J (2006) Mitochondrial Ca(2+) uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion. Cardiovasc Res 71:715–724

    Article  PubMed  CAS  Google Scholar 

  53. Thourani VH, Weintraub WS, Stein B, Gebhart SS, Craver JM, Jones EL, Guyton RA (1999) Influence of diabetes mellitus on early and late outcome after coronary artery bypass grafting. Ann Thorac Surg 67:1045–1052

    Article  PubMed  CAS  Google Scholar 

  54. Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM (2005) Preconditioning the diabetic heart: the importance of akt phosphorylation. Diabetes 54:2360–2364

    Article  PubMed  CAS  Google Scholar 

  55. Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR (2001) Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 276:48627–48630

    Article  PubMed  CAS  Google Scholar 

  56. Verma S, McNeill JH (1994) Metformin improves cardiac function in isolated streptozotocin-diabetic rat hearts. Am J Physiol 266:H714–H719

    PubMed  CAS  Google Scholar 

  57. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the British Heart Foundation for continuing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek M. Yellon.

Additional information

Returned for 1. Revision: 14 May 2007 1. Revision received: 18 May 2007

Returned for 2. Revision: 4 June 2007 2. Revision received: 23 October 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhamra, G.S., Hausenloy, D.J., Davidson, S.M. et al. Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol 103, 274–284 (2008). https://doi.org/10.1007/s00395-007-0691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-007-0691-y

Key words

Navigation