Skip to main content

Advertisement

Log in

Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Mitochondrial-mediated oxidative stress in response to high glucose is proposed as a primary cause of dorsal root ganglia (DRG) neuron injury in the pathogenesis of diabetic neuropathy. In the present study, we report a greater number of mitochondria in both myelinated and unmyelinated dorsal root axons in a well-established model of murine diabetic neuropathy. No similar changes were seen in younger diabetic animals without neuropathy or in the ventral motor roots of any diabetic animals. These findings led us to examine mitochondrial biogenesis and fission in response to hyperglycemia in the neurites of cultured DRG neurons. We demonstrate overall mitochondrial biogenesis via increases in mitochondrial transcription factors and increases in mitochondrial DNA in both DRG neurons and axons. However, this process occurs over a longer time period than a rapidly observed increase in the number of mitochondria in DRG neurites that appears to result, at least in part, from mitochondrial fission. We conclude that during acute hyperglycemia, mitochondrial fission is a prominent response, and excessive mitochondrial fission may result in dysregulation of energy production, activation of caspase 3, and subsequent DRG neuron injury. During more prolonged hyperglycemia, there is evidence of compensatory mitochondrial biogenesis in axons. Our data suggest that an imbalance between mitochondrial biogenesis and fission may play a role in the pathogenesis of diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amiri M, Hollenbeck PJ (2008) Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol 68:1348–1361

    Article  CAS  PubMed  Google Scholar 

  2. Bacman SR, Bradley WG, Moraes CT (2006) Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target? Mol Neurobiol 33:113–131

    Article  CAS  PubMed  Google Scholar 

  3. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  4. Cameron NE, Cotter MA (2008) Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets 9:60–67

    Article  CAS  PubMed  Google Scholar 

  5. Cartoni R, Martinou JC (2009) Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp Neurol 218:268–273

    Article  CAS  PubMed  Google Scholar 

  6. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    Article  CAS  PubMed  Google Scholar 

  7. Edwards JL, Quattrini A, Lentz SI et al (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53:160–169

    Article  CAS  PubMed  Google Scholar 

  8. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  CAS  PubMed  Google Scholar 

  9. Garnier A, Fortin D, Zoll J et al (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43–52

    Article  CAS  PubMed  Google Scholar 

  10. Handschin C (2009) The biology of PGC-1alpha and its therapeutic potential. Trends Pharmacol Sci 30:322–329

    Article  CAS  PubMed  Google Scholar 

  11. Knott AB, Perkins G, Schwarzenbacher R et al (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518

    Article  CAS  PubMed  Google Scholar 

  12. Kowluru RA, Atasi L, Ho YS (2006) Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 47:1594–1599

    Article  PubMed  Google Scholar 

  13. Leinninger GM, Backus C, Sastry AM et al (2006) Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis 23:11–22

    Article  CAS  PubMed  Google Scholar 

  14. Lentz SI, Edwards JL, Backus C et al (2010) Mitochondrial DNA (mtDNA) biogenesis: visualization and duel incorporation of BrdU and EdU into newly synthesized mtDNA in vitro. J Histochem Cytochem. doi:10.1369/jhc.2009.954701

  15. Leuner K, Hauptmann S, Abdel-Kader R et al (2007) Mitochondrial dysfunction: the first domino in brain aging and Alzheimer’s disease? Antioxid Redox Signal 9:1659–1675

    Article  CAS  PubMed  Google Scholar 

  16. Men X, Wang H, Li M et al (2009) Dynamin-related protein 1 mediates high glucose induced pancreatic beta cell apoptosis. Int J Biochem Cell Biol 41:879–890

    Article  CAS  PubMed  Google Scholar 

  17. Midaoui AE, Elimadi A, Wu L et al (2003) Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production. Am J Hypertens 16:173–179

    Article  PubMed  Google Scholar 

  18. Mironov SL (2009) Complexity of mitochondrial dynamics in neurons and its control by ADP produced during synaptic activity. Int J Biochem Cell Biol 41:2005–2014

    Article  CAS  PubMed  Google Scholar 

  19. Moreira PI, Santos MS, Seica R et al (2007) Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. J Neurol Sci 257:206–214

    Article  CAS  PubMed  Google Scholar 

  20. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol 292:C670–C686

    Article  CAS  Google Scholar 

  21. Nisoli E, Clementi E, Moncada S et al (2004) Mitochondrial biogenesis as a cellular signaling framework. Biochem Pharmacol 67:1–15

    Article  CAS  PubMed  Google Scholar 

  22. Ouvrier R, Grew S (2010) Mechanisms of disease and clinical features of mutations of the gene for mitofusin 2: an important cause of hereditary peripheral neuropathy with striking clinical variability in children and adults. Dev Med Child Neurol 52:328–330

    Article  PubMed  Google Scholar 

  23. Pennathur S, Heinecke JW (2007) Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 7:257–264

    Article  CAS  PubMed  Google Scholar 

  24. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29:351–366

    Article  CAS  PubMed  Google Scholar 

  25. Polster BM, Fiskum G (2004) Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90:1281–1289

    Article  CAS  PubMed  Google Scholar 

  26. Quattrini A, Previtali S, Feltri ML et al (1996) á4 Integrin and other Schwann cell markers in axonal neuropathy. Glia 17:294–306

    Article  CAS  PubMed  Google Scholar 

  27. Russell JW, Golovoy D, Vincent AM et al (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16:1738–1748

    Article  CAS  PubMed  Google Scholar 

  28. Russell JW, Sullivan KA, Windebank AJ et al (1999) Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 6:347–363

    Article  CAS  PubMed  Google Scholar 

  29. Said G (2007) Diabetic neuropathy—a review. Nat Clin Pract Neurol 3:331–340

    Article  PubMed  Google Scholar 

  30. Sasaki H, Schmelzer JD, Zollman PJ et al (1997) Neuropathology and blood flow of nerve, spinal roots and dorsal root ganglia in longstanding diabetic rats. Acta Neuropathol 93:118–128

    Article  CAS  PubMed  Google Scholar 

  31. Schmeichel AM, Schmelzer JD, Low PA (2003) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52:165–171

    Article  CAS  PubMed  Google Scholar 

  32. Sullivan KA, Hayes JM, Wiggin TD et al (2007) Mouse models of diabetic neuropathy. Neurobiol Dis 28:276–285

    Article  CAS  PubMed  Google Scholar 

  33. Sullivan KA, Lentz SI, Roberts JL Jr et al (2008) Criteria for creating and assessing mouse models of diabetic neuropathy. Curr Drug Targets 9:3–13

    Article  CAS  PubMed  Google Scholar 

  34. Van Laar VS, Berman SB (2009) Mitochondrial dynamics in Parkinson’s disease. Exp Neurol 218:247–256

    Article  PubMed  Google Scholar 

  35. Vincent AM, Feldman EL (2008) Can drug screening lead to candidate therapies for testing in diabetic neuropathy? Antioxid Redox Signal 10:387–393

    Article  CAS  PubMed  Google Scholar 

  36. Vincent AM, Hayes JM, McLean LL et al (2009) Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes 58:2376–2385

    Article  CAS  PubMed  Google Scholar 

  37. Vincent AM, Kato K, McLean LL et al (2009) Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid Redox Signal 11:425–438

    Article  CAS  PubMed  Google Scholar 

  38. Vincent AM, McLean LL, Backus C et al (2005) Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 19:638–640

    CAS  PubMed  Google Scholar 

  39. Vincent AM, Olzmann JA, Brownlee M et al (2004) Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 53:726–734

    Article  CAS  PubMed  Google Scholar 

  40. Vincent AM, Perrone L, Sullivan KA et al (2007) Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148:548–558

    Article  CAS  PubMed  Google Scholar 

  41. Vincent AM, Russell JW, Sullivan KA et al (2007) SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Exp Neurol 208:216–227

    CAS  PubMed  Google Scholar 

  42. Vincent AM, Stevens MJ, Backus C et al (2005) Cell culture modeling to test therapies against hyperglycemia-mediated oxidative stress and injury. Antioxid Redox Signal 7:1494–1506

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Su B, Lee HG et al (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103

    Article  CAS  PubMed  Google Scholar 

  44. Yin W, Signore AP, Iwai M et al (2008) Rapidly increased neuronal mitochondrial biogenesis after hypoxic–ischemic brain injury. Stroke 39:3057–3063

    Article  PubMed  Google Scholar 

  45. Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663

    Article  CAS  PubMed  Google Scholar 

  46. Yu T, Sheu SS, Robotham JL et al (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79:341–351

    Article  CAS  PubMed  Google Scholar 

  47. Yuan H, Gerencser AA, Liot G et al (2007) Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death Differ 14:462–471

    Article  CAS  PubMed  Google Scholar 

  48. Zhao C, Takita J, Tanaka Y et al (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105:587–597

    Article  CAS  PubMed  Google Scholar 

  49. Zherebitskaya E, Akude E, Smith DR et al (2009) Development of selective axonopathy in adult sensory neurons isolated from diabetic rats: role of glucose-induced oxidative stress. Diabetes 58:1356–1364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Chemistry Core of the MDRTC for mouse plasma insulin and GHb measurements. This work was supported by the Juvenile Diabetes Research Foundation (AMV, ELF), the American Diabetes Association (AMV), the Animal Models of Diabetes Complications Consortium (AMDCC; NIH UO1 DK076160, ELF), the Program for Neurology Research and Discovery (JLE), the A. Alfred Taubman Medical Institute (AMV, JLE, ELF), the Instituto Superiore di Sanita (AQ), and FIRB (AQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Vincent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3235 kb)

Supplementary material 2 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, A.M., Edwards, J.L., McLean, L.L. et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 120, 477–489 (2010). https://doi.org/10.1007/s00401-010-0697-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0697-7

Keywords

Navigation