Skip to main content
Log in

Chromatin remodeling by nuclear receptors

  • Chromosoma Focus
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The eukaryotic genome is structurally organized into nucleosomes to form chromatin, which regulates gene expression, in part, by controlling the accessibility of regulatory factors. When packaged as chromatin, many promoters are transcriptionally repressed, thus reducing the access of transcription factors to their binding sites. However, nuclear receptors (NRs) are a group of transcription factors that have the ability to access their binding sites in this repressive chromatin structure. Nuclear receptors are able to bind to their sites and recruit chromatin-remodeling proteins such as ATP-dependent chromatin-remodeling complexes and histone-modifying enzymes, resulting in transcriptional activation. In this review, we present the role of NRs in recruiting these chromatin-modifying enzymes by means of an extensively studied model system, the glucocorticoid receptor-mediated transactivation of the mouse mammary tumor virus (MMTV) promoter. We use these findings as a template to begin to understand the effect of chromatin changes on gene expression during spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Archer TK, Cordingley MG, Marsaud V, Richard-Foy H, Hager GL (1989) Steroid transactivation at a promoter organized in a specifically-positioned array of nucleosomes. In: Carlsedt-Duke J, Eriksson H, Gustafsson JA (eds) The steroid/thyroid hormone receptor family and gene regulation. Birkhauser, Basel, pp 221–238

    Google Scholar 

  • Archer TK, Cordingley MG, Wolford RG, Hager GL (1991) Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol Cell Biol 11:688–698

    PubMed  CAS  Google Scholar 

  • Archer TK, Lefebvre P, Wolford RG, Hager GL (1992) Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 88:10148–10152

    Article  PubMed  CAS  Google Scholar 

  • Banks GC, Deterding LJ, Tomer KB, Archer TK (2001) Hormone-mediated dephosphorylation of specific histone H1 isoforms. J Biol Chem 276:36467–36473

    Article  PubMed  CAS  Google Scholar 

  • Bartsch J, Truss M, Bode J, Beato M (1996) Moderate increase in histone acetylation activates the mouse mammary tumor virus promoter and remodels its nucleosome structure. Proc Natl Acad Sci U S A 93:10741–10746

    Article  PubMed  CAS  Google Scholar 

  • Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273

    Article  PubMed  CAS  Google Scholar 

  • Belandia B, Orford RL, Hurst HC, Parker MG (2002) Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 21:4094–4103

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2001) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12:142–148

    Article  Google Scholar 

  • Bhattacharjee RN, Banks GC, Trotter KW, Lee HL, Archer TK (2001) Histone H1 phosphorylation by Cdk2 selectively modulates mouse mammary tumor virus transcription through chromatin remodeling. Mol Cell Biol 21:5417–5425

    Article  PubMed  CAS  Google Scholar 

  • Bouvet P, Dimitrov S, Wolffe AP (1994) Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev 8:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Bresnick EH, John S, Berard DS, LeFebvre P, Hager GL (1990) Glucocorticoid receptor-dependent disruption of a specific nucleosome on the mouse mammary tumor virus promoter is prevented by sodium butyrate. Proc Natl Acad Sci U S A 87:3977–3981

    Article  PubMed  CAS  Google Scholar 

  • Bresnick EH, Bustin M, Marsaud V, Richard-Foy H, Hager GL (1992) The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res 20:273–278

    Article  PubMed  CAS  Google Scholar 

  • Brown CE, Lechner T, Howe L, Workman JL (2000) The many HATs of transcription coactivators. Trends Biochem Sci 25:15–19

    Article  PubMed  CAS  Google Scholar 

  • Calogero AE, Burrello N, Barone N, Palermo I, Grasso U, D’Agata R (2000) Effects of progesterone on sperm function: mechanisms of action. Hum Reprod 15 Suppl 1:28–45

    PubMed  CAS  Google Scholar 

  • Chambliss KL, Yuhanna IS, Anderson RG, Mendelsohn ME, Shaul PW (2002) ERbeta has nongenomic action in caveolae. Mol Endocrinol 16:938–946

    Article  PubMed  CAS  Google Scholar 

  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM (1999) Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98:675–686

    Article  PubMed  CAS  Google Scholar 

  • Cheung E, Zarifyan AS, Kraus WL (2002) Histone HI represses estrogen receptor alpha transcriptional activity by selectively inhibiting receptor-mediated transcription initiation. Mol Cell Biol 22:2463–2471

    Article  PubMed  CAS  Google Scholar 

  • Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271

    Article  PubMed  CAS  Google Scholar 

  • Collingwood TN, Urnov FD, Wolffe AP (1999) Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J Mol Endocrinol 23:255–275

    Article  PubMed  CAS  Google Scholar 

  • Cordingley MG, Riegel AT, Hager GL (1987) Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48:261–270

    Article  PubMed  CAS  Google Scholar 

  • Corona DF, Langst G, Clapier CR, Bonte EJ, Ferrari S, Tamkun JW, Becker PB (1999) ISWI is an ATP-dependent nucleosome remodeling factor. Mol Cell 3:239–245

    Article  PubMed  CAS  Google Scholar 

  • Couse JE, Mahato D, Eddy EM, Korach K S (2001) Molecular mechanism of estrogen action in the male: insights from the estrogen receptor null mice. Reprod Fertil Dev 13:211–219

    Article  PubMed  CAS  Google Scholar 

  • Deckert J, Struhl K (2001) Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 21:2726–2735

    Article  PubMed  CAS  Google Scholar 

  • DeFranco DB (2002) Navigating steroid hormone receptors through the nuclear compartment. Mol Endocrinol 16:1449–1455

    Article  PubMed  CAS  Google Scholar 

  • Deroo BJ, Archer TK (2001) Glucocorticoid receptor-mediated chromatin remodeling in vivo. Oncogene 20:3039–3046

    Article  PubMed  CAS  Google Scholar 

  • Deroo BJ, Rentsch C, Sampath S, Young J, DeFranco DB, Archer TK (2002) Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol Cell Biol 22:4113–4123

    Article  PubMed  CAS  Google Scholar 

  • Dilworth FJ, Chambon P (2001) Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 20:3047–3054

    Article  PubMed  CAS  Google Scholar 

  • Dingwall AK, Beek SJ, McCallum CM, Tamkun JW, Kalpana GV, Goff SP, Scott MP (1995) The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol Biol Cell 6:777–791

    PubMed  CAS  Google Scholar 

  • Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23:2715–2723

    Article  PubMed  CAS  Google Scholar 

  • Fletcher TM, Ryu BW, Baumann CT, Warren BS, Fragoso G, John S, Hager GL (2000) Structure and dynamic properties of a glucocorticoid receptor-induced chromatin transition. Mol Cell Biol 20:6466–6475

    Article  PubMed  CAS  Google Scholar 

  • Fletcher TM, Xiao N, Mautino G, Baumann CT, Wolford R, Warren BS, Hager GL (2002) ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling. Mol Cell Biol 22:3255–3263

    Article  PubMed  CAS  Google Scholar 

  • Fryer CJ, Archer TK (1998) Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393:88–91

    Article  PubMed  CAS  Google Scholar 

  • Fryer CJ, Kinyamu HK, Rogatsky I, Garabedian MJ, Archer TK (2000) Selective activation of the glucocorticoid receptor by steroid antagonists in human breast cancer and osteosarcoma cells. J Biol Chem 275:17771–17777

    Article  PubMed  CAS  Google Scholar 

  • Grange T, Cappabianca L, Flavin M, Sassi H, Thomassin H (2001) In vivo analysis of the model tyrosine aminotransferase gene reveals multiple sequential steps in glucocorticoid receptor action. Oncogene 20:3028–3038

    Article  PubMed  CAS  Google Scholar 

  • Guschin D, Wade PA, Kikyo N, Wolffe AP (2000) ATP-Dependent histone octamer mobilization and histone deacetylation mediated by the Mi-2 chromatin remodeling complex. Biochemistry 39:5238–5245

    Article  PubMed  CAS  Google Scholar 

  • Hager GL, Fletcher TM, Xiao N, Baumann CT, Muller WG, McNally JG (2000) Dynamics of gene targeting and chromatin remodelling by nuclear receptors. Biochem Soc Trans 28:405–410

    Article  PubMed  CAS  Google Scholar 

  • Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sele B, Khochbin S, Rousseaux S (2000) Regulated hyperacetylation of core histories during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79:950–960

    Article  PubMed  CAS  Google Scholar 

  • Hebbar PB, Archer TK (2003) Nuclear factor 1 is required for both hormone-dependent chromatin remodeling and transcriptional activation of the mouse mammary tumor virus promoter. Mol Cell Biol 23:887–898

    Article  PubMed  CAS  Google Scholar 

  • Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23:175–200

    Article  PubMed  CAS  Google Scholar 

  • Hill DA (2001) Influence of linker histone H1 on chromatin remodeling. Biochem Cell Biol 79:317–324

    Article  PubMed  CAS  Google Scholar 

  • Horn PJ, Peterson CL (2002) Molecular biology: chromatin higher order folding — wrapping up transcription. Science 297:1824–1827

    Article  PubMed  CAS  Google Scholar 

  • Hsia SC, Shi YB (2002) Chromatin disruption and histone acetylation in regulation of the human immunodeficiency virus type 1 long terminal repeat by thyroid hormone receptor. Mol Cell Biol 22:4043–4052

    Article  PubMed  CAS  Google Scholar 

  • Hsiao PW, Deroo BJ, Archer TK (2002) Chromatin remodeling and tissue-selective responses of nuclear hormone receptors. Biochem Cell Biol 80:343–351

    Article  PubMed  CAS  Google Scholar 

  • Jason LJ, Moore SC, Lewis JD, Lindsey G, Ausio J (2002) Histone ubiquitination: a tagging tail unfolds? Bioessays 24:166–174

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D (2001) Functional significance of histone deacetylase diversity. Curr Opin Genet Dev 11:162–166

    Article  PubMed  CAS  Google Scholar 

  • Kinyamu HK, Fryer CJ, Horwitz KB, Archer TK (2000) The mouse mammary tumor virus promoter adopts distinct chromatin structures in human breast cancer cells with and without glucocorticoid receptor. J Biol Chem 275:20061–20068

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 12:198–209

    Article  PubMed  CAS  Google Scholar 

  • Kuo MH, vom Baur E, Struhl K, Allis CD (2000) Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell 6:1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, Page DC (2002) Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci U S A 99:8707–8712

    Article  PubMed  CAS  Google Scholar 

  • Langst G, Bonte EJ, Corona DF, Becker PB (1999) Nucleosome movement by CHRAC and ISWI without disruption or transdisplacement of the histone octamer. Cell 97:843–852

    Article  PubMed  CAS  Google Scholar 

  • Laybourn PJ, Kadonaga JT (1991) Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254:238–245

    Article  PubMed  CAS  Google Scholar 

  • Lee HL, Archer TK (1994) Nucleosome-mediated disruption of transcription factor-chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo. Mol Cell Biol 14:32–41

    PubMed  CAS  Google Scholar 

  • Lee HL, Archer TK (1998) Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. EMBO J 17:1454–1466

    Article  PubMed  CAS  Google Scholar 

  • Lemon B, Inouye C, King DS, Tjian R (2001) Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414:924–928

    Article  PubMed  CAS  Google Scholar 

  • Logie C, Peterson CL (1997) Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J 16:6772–6782

    Article  PubMed  CAS  Google Scholar 

  • Lorch Y, Zhang M, Kornberg RD (1999) Histone octamer transfer by a chromatin-remodeling complex. Cell 96:389–392

    Article  PubMed  CAS  Google Scholar 

  • Luconi M, Bonaccorsi L, Forti G, Baldi E (2001) Effects of estrogenic compounds on human spermatozoa: evidence for interaction with a nongenomic receptor for estrogen on human sperm membrane. Mol Cell Endocrinol 178:39–45

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Baumann CT, Li H, Strahl BD, Rice R, Jelinek MA, Aswad DW, Allis C D, Hager GL, Stallcup MR (2001) Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr Biol 11:1981–1985

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  PubMed  CAS  Google Scholar 

  • McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474

    Article  PubMed  CAS  Google Scholar 

  • McNally JG, Muller WG, Walker D, Wolford R, Hager GL (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–1265

    Article  PubMed  CAS  Google Scholar 

  • Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD (1992) Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev 31:170–181

    Article  PubMed  CAS  Google Scholar 

  • Mymryk JS, Berard D, Hager GL, Archer TK (1995) Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone-independent loading of transcription factors in vivo. Mol Cell Biol 15:26–34

    PubMed  CAS  Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  PubMed  CAS  Google Scholar 

  • Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK, Wang W (2000) A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol 20:8879–8888

    Article  PubMed  CAS  Google Scholar 

  • Orphanides G, Reinberg D (2000) RNA polymerase II elongation through chromatin. Nature 407:471–475

    Article  PubMed  CAS  Google Scholar 

  • Ostlund Farrants AK, Blomquist P, Kwon H, Wrange O (1997) Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol Cell Biol 17:895–905

    PubMed  CAS  Google Scholar 

  • Owen-Hughes T, Workman JL (1996) Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones. EMBO J 15:4702–4712

    PubMed  CAS  Google Scholar 

  • Phelan ML, Sif S, Narlikar GJ, Kingston RE (1999) Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 3:247–253

    Article  PubMed  CAS  Google Scholar 

  • Prado F, Koop R, Beato M (2002) Accurate chromatin organization of the mouse mammary tumor virus promoter determines the nature of the synergism between transcription factors. J Biol Chem 277:4911–4917

    Article  PubMed  CAS  Google Scholar 

  • Revelli A, Modotti M, Piffaretti-Yanez A, Massobrio M, Balerna M (1994) Steroid receptors in human spermatozoa. Hum Reprod 9:760–766

    PubMed  CAS  Google Scholar 

  • Richard-Foy H, Hager GL (1987) Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J 6:2321–2328

    PubMed  CAS  Google Scholar 

  • Robyr D, Gegonne A, Wolffe AP, Wahli W (2000) Determinants of vitellogenin B1 promoter architecture. HNF3 and estrogen responsive transcription within chromatin. J Biol Chem 275:28291–28300

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296:2176–2178

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler G, Sif S, Kingston RE (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94:17–27

    Article  PubMed  CAS  Google Scholar 

  • Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774

    Article  PubMed  CAS  Google Scholar 

  • Sheldon LA, Becker M, Smith CL (2001) Steroid hormone receptor-mediated histone deacetylation and transcription at the mouse mammary tumor virus promoter. J Biol Chem 276:32423–32426

    Article  PubMed  CAS  Google Scholar 

  • Stafford JM, Wilkinson JC, Beechem JM, Granner DK (2001) Accessory factors facilitate the binding of glucocorticoid receptor to the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 276:39885–39891

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR, Caldwell JA, Mollah S, Cook RG, Shabanowitz J, Hunt DF, Allis CD (2002) Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22:1298–1306

    Article  PubMed  CAS  Google Scholar 

  • Sudarsanam P, Winston F (2000) The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet 16:345–351

    Article  PubMed  CAS  Google Scholar 

  • Van Holde KE (1989) Chromatin. In: Rich A (ed) Springer Series in Molecular Biology. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20:1899–1910

    Article  PubMed  CAS  Google Scholar 

  • Villagra A, Gutierrez J, Paredes R, Sierra J, Puchi M, Imschenetzky M, Wijnen AvA, Lian J, Stein G, Stein J, Montecino M (2002) Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J Cell Biochem 85:112–122

    Article  PubMed  CAS  Google Scholar 

  • Vornberger W, Prins G, Musto NA, Suarez-Quian CA (1994) Androgen receptor distribution in rat testis: new implications for androgen regulation of spermatogenesis. Endocrinology 134:2307–2316

    Article  PubMed  CAS  Google Scholar 

  • Wallace AD, Cidlowski JA (2001) Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 276:42714–42721

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Cote J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, Workman JL, Crabtree GR (1996a) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 15:5370–5382

    PubMed  CAS  Google Scholar 

  • Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR (1996b) Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev 10:2117–2130

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Pongrac JL, DeFranco DB (2002) Glucocorticoid receptors in hippocampal neurons that do not engage proteasomes escape from hormone-dependent down-regulation but maintain transactivation activity. Mol Endocrinol 16:1987–1998

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H (1983) Tissue-specific gene expression and chromatin structure. Harvey Lect 79:217–244

    PubMed  CAS  Google Scholar 

  • Whitehouse I, Flaus A, Havas K, Owen-Hughes T (2000) Mechanisms for ATP-dependent chromatin remodelling. Biochem Soc Trans 28:376–379

    Article  PubMed  CAS  Google Scholar 

  • Willis SD, Seyfred MA (1996) Pituitary-specific chromatin structure of the rat prolactin distal enhancer element. Nucleic Acids Res 24:1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, Ricci AR, Deroo BJ, Archer TK (2002) The histone deacetylase inhibitor trichostatin A blocks progesterone receptor-mediated transactivation of the mouse mammary tumor virus promoter in vivo. J Biol Chem 277:15171–15181

    PubMed  CAS  Google Scholar 

  • Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS (1997) Characterization of the CHD family of proteins. Proc Natl Acad Sci U S A 94:11472–11477

    Article  PubMed  CAS  Google Scholar 

  • Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, Weil MM, Behringer RR, Meistrich ML (2000) Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci U S A 97:4683–4688

    Article  PubMed  CAS  Google Scholar 

  • Zaret KS, Yamamoto KR (1984) Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell 38:29–38

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, Deng JM, Arango NA, Terry NH, Weil MM, Russell LD, Behringer RR, Meistrich ML (2001) Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol 21:7243–7255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor K. Archer.

Additional information

Published online: 26 February 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebbar, P.B., Archer, T.K. Chromatin remodeling by nuclear receptors. Chromosoma 111, 495–504 (2003). https://doi.org/10.1007/s00412-003-0232-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-003-0232-x

Keywords

Navigation