Skip to main content
Log in

cAMP induced Rac 1-mediated cytoskeletal reorganization in microvascular endothelium

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

It is well established that cAMP stabilizes endothelial barrier functions, in part by regulation of VE-cadherin via EPAC/Rap 1. The aim of the present study was to investigate whether cAMP activates Rac 1 in microvascular endothelium. In human dermal microvascular endothelial cells (HDMEC), treatment with forskolin/rolipram (F/R) to increase cAMP by as well as the Epac/Rap 1-stimulating cAMP analogue 8-pCPT-2′-O-methyl-cAMP (O-Me-cAMP) stabilized endothelial barrier properties as revealed by raised transendothelial electrical resistance (TER). Under these conditions, immunostaining of VE-cadherin and claudin 5 were increased and linearized. This was paralleled by activation of Rac 1 by 153 ± 16% (F/R) or 281 ± 65% (O-Me-cAMP) whereas activity of Rho A was unchanged. F/R and O-Me-cAMP increased the peripheral actin belt and recruited the Rac 1 effector cortactin to cell junctions, similar to direct activation of Rac 1 by CNF-1. Thrombin was used to further test the physiologic relevance of cAMP-mediated Rac 1 activation. Thrombin-induced drop of TER was paralleled by intercellular gap formation, inactivation of Rac 1 and activation of Rho A at 5 and 15 min whereas baseline conditions where re-established following 60 min. Both, F/R and O-Me-cAMP completely blocked the thrombin-induced barrier breakdown. F/R completely abolished thrombin-induced Rac 1 inactivation and Rho A activation whereas O-Me-cAMP only partially blocked Rac 1 inactivation. Taken together, these results indicate that Rac 1 activation likely contributes to the barrier-stabilizing effects of cAMP in microvascular endothelium and that these effects may in part be mediated by Epac/Rap 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamson RH, Liu B, Fry GN, Rubin LL, Curry FE (1998) Microvascular permeability and number of tight junctions are modulated by cAMP. Am J Physiol 274:H1885–H1894

    PubMed  CAS  Google Scholar 

  • Adamson RH, Curry FE, Adamson G, Liu B, Jiang Y, Aktories K, Barth H, Daigeler A, Golenhofen N, Ness W, Drenckhahn D (2002) Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice. J Physiol 539:295–308

    Article  PubMed  CAS  Google Scholar 

  • Adamson RH, Zeng M, Adamson GN, Lenz JF, Curry FE (2003) PAF- and bradykinin-induced hyperpermeability of rat venules is independent of actin-myosin contraction. Am J Physiol Heart Circ Physiol 285:H406–H417

    PubMed  CAS  Google Scholar 

  • Adamson RH, Ly JC, Sarai RK, Lenz JF, Altangerel A, Drenckhahn D, Curry FR (2008) Epac/Rap1 pathway regulates microvascular hyperpermeability induced by PAF in rat mesentery. Am J Physiol Heart Circ Physiol (in press)

  • Baumer Y, Burger S, Curry FE, Golenhofen N, Drenckhahn D, Waschke J (2008) Differential role of Rho GTPases in endothelial barrier regulation dependent on endothelial cell origin. Histochem Cell Biol 129:179–191

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  PubMed  CAS  Google Scholar 

  • Birukova AA, Zagranichnaya T, Alekseeva E, Bokoch GM, Birukov KG (2007) Epac/Rap and PKA are novel mechanisms of ANP-induced Rac-mediated pulmonary endothelial barrier protection. J Cell Physiol 215(3):715–724

    Article  CAS  Google Scholar 

  • Blume C, Benz PM, Walter U, Ha J, Kemp BE, Renne T (2007) AMP-activated protein kinase impairs endothelial actin cytoskeleton assembly by phosphorylating vasodilator-stimulated phosphoprotein. J Biol Chem 282:4601–4612

    Article  PubMed  CAS  Google Scholar 

  • Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29:356–370

    Article  PubMed  CAS  Google Scholar 

  • Christensen AE, Selheim F, de Rooij J, Dremier S, Schwede F, Dao KK, Martinez A, Maenhaut C, Bos JL, Genieser HG, Doskeland SO (2003) cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 278:35394–35402

    Article  PubMed  CAS  Google Scholar 

  • Cioffi DL, Moore TM, Schaack J, Creighton JR, Cooper DM, Stevens T (2002) Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase. J Cell Biol 157:1267–1278

    Article  PubMed  CAS  Google Scholar 

  • Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN (2005) Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 105:1950–1955

    Article  PubMed  CAS  Google Scholar 

  • Curry FE (2002) Microvascular injury: mechanisms and modulation. Int J Angiol 11:1–6

    Article  CAS  Google Scholar 

  • Dormond O, Ruegg C (2003) Regulation of endothelial cell integrin function, angiogenesis by COX-2, cAMP and Protein Kinase A. Thromb Haemost 90:577–585

    PubMed  CAS  Google Scholar 

  • Ellerbroek SM, Wennerberg K, Burridge K (2003) Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 278:19023–19031

    Article  PubMed  CAS  Google Scholar 

  • Essler M, Amano M, Kruse HJ, Kaibuchi K, Weber PC, Aepfelbacher M (1998) Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 273:21867–21874

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa K, Mochizuki N (2005) Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Molec Cell Biol 25:136–146

    Article  PubMed  CAS  Google Scholar 

  • Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 108:689–701

    PubMed  CAS  Google Scholar 

  • Halbrugge M, Friedrich C, Eigenthaler M, Schanzenbacher P, Walter U (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem 265:3088–3093

    PubMed  CAS  Google Scholar 

  • Hartmann C, Zozulya A, Wegener J, Galla HJ (2007) The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 313:1318–1325

    Article  PubMed  CAS  Google Scholar 

  • Hastie LE, Patton WF, Hechtman HB, Shepro D (1997) H2O2-induced filamin redistribution in endothelial cells is modulated by the cyclic AMP-dependent protein kinase pathway. J Cell Physiol 172:373–381

    Article  PubMed  CAS  Google Scholar 

  • Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG (2006) Cell physiology of cAMP sensor Epac. J Physiol 577:5–15

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T, Sakisaka T, Baba T, Yamada T, Kimura T, Takai Y (2005) Regulation of E-cadherin endocytosis by nectin through afadin, Rap1, and p120ctn. J Biol Chem 280:24095–24103

    Article  PubMed  CAS  Google Scholar 

  • Jacobson JR, Dudek SM, Singleton PA, Kolosova IA, Verin AD, Garcia JG (2006) Endothelial cell barrier enhancement by ATP is mediated by the small GTPase Rac and cortactin. Am J Physiol 291:L289–L295

    Article  CAS  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Ann Rev of Cell Dev Biol 21:247–269

    Article  CAS  Google Scholar 

  • Kooistra MR, Corada M, Dejana E, Bos JL (2005) Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 579:4966–4972

    Article  PubMed  CAS  Google Scholar 

  • Kooistra MR, Dube N, Bos JL (2007) Rap1: a key regulator in cell–cell junction formation. J Cell Sci 120:17–22

    Article  PubMed  CAS  Google Scholar 

  • Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lorenowicz MJ, Fernandez-Borja M, Hordijk PL (2007) cAMP signaling in leukocyte transendothelial migration. Arteriosclerosis Thrombosis Vasc Biol 27:1014–1022

    Article  CAS  Google Scholar 

  • Majumdar M, Seasholtz TM, Buckmaster C, Toksoz D, Brown JH (1999) A rho exchange factor mediates thrombin and Galpha(12)-induced cytoskeletal responses. J Biol Chem 274:26815–26821

    Article  PubMed  CAS  Google Scholar 

  • Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    Article  PubMed  CAS  Google Scholar 

  • Mehta D, Rahman A, Malik AB (2001) Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J Biol Chem 276:22614–22620

    Article  PubMed  CAS  Google Scholar 

  • Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    PubMed  CAS  Google Scholar 

  • Nishikawa M, de Lanerolle P, Lincoln TM, Adelstein RS (1984) Phosphorylation of mammalian myosin light chain kinases by the catalytic subunit of cyclic AMP-dependent protein kinase and by cyclic GMP-dependent protein kinase. J Biol Chem 259:8429–8436

    PubMed  CAS  Google Scholar 

  • O’Connor KL, Mercurio AM (2001) Protein kinase A regulates Rac and is required for the growth factor-stimulated migration of carcinoma cells. J Biol Chem 276:47895–47900

    Article  PubMed  CAS  Google Scholar 

  • Qiao J, Huang F, Lum H (2003) PKA inhibits RhoA activation: a protection mechanism against endothelial barrier dysfunction. Am J Physiol 284:L972–L980

    CAS  Google Scholar 

  • Rosenberger P, Khoury J, Kong T, Weissmuller T, Robinson AM, Colgan SP (2007) Identification of vasodilator-stimulated phosphoprotein (VASP) as an HIF-regulated tissue permeability factor during hypoxia. Faseb J 21:2613–2621

    Article  PubMed  CAS  Google Scholar 

  • Schlegel N, Burger S, Golenhofen N, Walter U, Drenckhahn D, Waschke J (2008) The role of VASP in regulation of cAMP- and Rac 1-mediated endothelial barrier stabilization. Am J Physiol Cell Physiol 294:C178–C188

    Article  PubMed  CAS  Google Scholar 

  • Stelzner TJ, Weil JV, O’Brien RF (1989) Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J Cell Physiol 139:157–166

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I (1992) Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci USA 89:7919–7923

    Article  PubMed  CAS  Google Scholar 

  • van Nieuw Amerongen GP, van Hinsbergh VW (2002) Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul Pharmacol 39:257–272

    Article  PubMed  CAS  Google Scholar 

  • Vouret-Craviari V, Bourcier C, Boulter E, van Obberghen-Schilling E (2002) Distinct signals via Rho GTPases and Src drive shape changes by thrombin and sphingosine-1-phosphate in endothelial cells. J Cell Sci 115:2475–2484

    PubMed  CAS  Google Scholar 

  • Waschke J, Baumgartner W, Adamson RH, Zeng M, Aktories K, Barth H, Wilde C, Curry FE, Drenckhahn D (2004a) Requirement of Rac activity for maintenance of capillary endothelial barrier properties. Am J Physiol Heart Circ Physiol 286:H394–H401

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Curry FE, Adamson RH, Drenckhahn D (2005) Regulation of actin dynamics is critical for endothelial barrier functions. Am J Physiol Heart Circ Physiol 288:H1296–H1305

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Drenckhahn D, Adamson RH, Barth H, Curry FE (2004b) cAMP protects endothelial barrier functions by preventing Rac-1 inhibition. Am J Physiol Heart Circ Physiol 287:H2427–H2433

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Nadja Niedermeier and Lisa Bergauer for skilful technical assistance and to Wolfgang-Moritz Heupel and Nicolas Schlegel for helpful discussion and technical advice. We thank Moritz Bünemann and Ruth Werthmann (both Institute for Pharmacology and Toxicology, University of Würzburg) for using amaxa nucleofector technology. Cytotoxic necrotizing factor (CNF-1) was supplied by Gundula Schmidt (Department of Pharmacology and Toxicology, University of Freiburg). The phosho-S157-VASP antibody was a kind gift from Ulrich Walter (University of Wuerzburg; Institute for Clinical biochemistry and Pathobiochemistry). The EFGP-Rac 1 plasmids were a kind gift of Kozo Kaibuchi (University of Nagoya, Japan). These studies were supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 688, TP A4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Waschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumer, Y., Drenckhahn, D. & Waschke, J. cAMP induced Rac 1-mediated cytoskeletal reorganization in microvascular endothelium. Histochem Cell Biol 129, 765–778 (2008). https://doi.org/10.1007/s00418-008-0422-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0422-y

Keywords

Navigation