Skip to main content
Log in

KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents

  • Cardiovascular System
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The HCN4 gene encodes a hyperpolarization-activated cation current contributing to the slow components of the pacemaking currents I f in the sinoatrial node and I h or I q in the thalamus. Heterologous expression studies of individual HCN channels have, however, failed to reproduce fully the diversity of native I f/h/q currents, suggesting the presence of modulating auxiliary subunits. Consistent with this is the recent description of KCNE2, which is highly expressed in the sinoatrial node, as a β-subunit of rapidly activating HCN1 and HCN2 channels. To determine whether KCNE2 can also modulate the slow component of native I f/h/q currents, we co-expressed KCNE2 with HCN4 in Xenopus oocytes and in Chinese hamster ovary (CHO) cells and analysed the resulting currents using two-electrode voltage-clamp and patch-clamp techniques, respectively. In both cell types, co-expressed KCNE2 enhanced HCN4-generated current amplitudes, slowed the activation kinetics and shifted the voltage for half-maximal activation of currents to more negative voltages. In contrast, the related family members KCNE1, KCNE3 and KCNE4 did not change current characteristics of HCN4. Consistent with these electrophysiological results, the carboxy-terminal tail of KCNE2, but not of other KCNE subunits, interacted with the carboxy-terminal tail of HCN4 in yeast two-hybrid assays. KCNE2, by modulating I f or I h currents, might thus contribute to the electrophysiological diversity of known pacemaking currents in the heart and brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–H.
Fig. 2A–D.
Fig. 3A–H.
Fig. 4A–G.
Fig. 5A–C.
Fig. 6.

Similar content being viewed by others

References

  1. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA (1999) MiRP1 forms I Kr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97:175–187

    CAS  PubMed  Google Scholar 

  2. Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SA (2001) MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104:217–231

    CAS  PubMed  Google Scholar 

  3. Abbott GW, Goldstein SA, Sesti F (2001) Do all voltage-gated potassium channels use MiRPs? Circ Res 88:981–983

    Google Scholar 

  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1997) Current protocols in molecular biology. Wiley, New York

  5. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384:78–80

    Google Scholar 

  6. Cerbai E, Sartiani L, DePaoli P, Pino R, Maccherini M, Bizzarri F, DiCiolla F, Davoli G, Sani G, Mugelli A (2001) The properties of the pacemaker current If in human ventricular myocytes are modulated by cardiac disease. J Mol Cell Cardiol 33:441–448

    Article  CAS  PubMed  Google Scholar 

  7. Cui J, Kagan A, Qin D, Mathew J, Melman YF, McDonald TV (2001) Analysis of the cyclic nucleotide binding domain of the HERG potassium channel and interactions with KCNE2. J Biol Chem 276:17244–17251

    CAS  PubMed  Google Scholar 

  8. Denyer JC, Brown HF (1990) Pacemaking in rabbit isolated sino-atrial node cells during Cs+ block of the hyperpolarization-activated current i f. J Physiol (Lond) 429:401–409

    Google Scholar 

  9. DiFrancesco D, Ojeda C (1980) Properties of the current if in the sino-atrial node of the rabbit compared with those of the current I K, in Purkinje fibres. J Physiol (Lond) 308:353–367

    Google Scholar 

  10. Franco D, Demolombe S, Kupershmidt S, Dumaine R, Dominguez JN, Roden D, Antzelevitch C, Escande D, Moorman AF (2001) Divergent expression of delayed rectifier K+ channel subunits during mouse heart development. Cardiovasc Res 52:65–75

    Article  CAS  PubMed  Google Scholar 

  11. Ishii TM, Takano M, Xie LH, Noma A, Ohmori H (1999) Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. J Biol Chem 274:12835–12839

    CAS  PubMed  Google Scholar 

  12. Kuruma A, Hirayama Y, Hartzell HC (2000) A hyperpolarization- and acid-activated nonselective cation current in Xenopus oocytes. Am J Physiol 279:C1401–C1413

    CAS  Google Scholar 

  13. Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD, Busch AE, Steinmeyer K (2000) Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem 275:22395–22400

    CAS  PubMed  Google Scholar 

  14. Lorenz C, Pusch M, Jentsch TJ (1996) Heteromultimeric CLC chloride channels with novel properties. Proc Natl Acad Sci USA 93:13362–13366

    Article  Google Scholar 

  15. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization activated mammalian cation channels. Nature 393:587–591

    CAS  PubMed  Google Scholar 

  16. Ludwig A, Zong X, Stieber J, Hullin R, Hofmann F, Biel M (1999) Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J 18:2323–2329

    CAS  PubMed  Google Scholar 

  17. Monteggia LM, Eisch AJ, Tang MD, Kaczmarek LK, Nestler EJ (2000) Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Res Mol Brain Res 81:129–139

    Article  CAS  PubMed  Google Scholar 

  18. Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268:1646–1652

    CAS  PubMed  Google Scholar 

  19. Proenza C, Angoli D, Agranovich E, Macri V, Accili EA (2002) Pacemaker channels produce an instantaneous current. J Biol Chem 277:5101–5109

    CAS  PubMed  Google Scholar 

  20. Santoro B, Grant SG, Bartsch D, Kandel ER (1997). Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 94:14815–14820

    CAS  PubMed  Google Scholar 

  21. Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:717–729

    CAS  PubMed  Google Scholar 

  22. Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR, Siegelbaum SA (2000) Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 20:5264–5275

    CAS  PubMed  Google Scholar 

  23. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83

    Google Scholar 

  24. Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403:196–199

    CAS  PubMed  Google Scholar 

  25. Seebohm G, Lerche C, Busch AE, Bachmann A (2001) Dependence of I Ks biophysical properties on the expression system. Pflugers Arch 442:891–895

    CAS  PubMed  Google Scholar 

  26. Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB (1999). Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci USA 96:9391–9396

    Article  CAS  PubMed  Google Scholar 

  27. Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, Robinson RB, Dixon JE, McKinnon D, Cohen IS (1999) Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 85:E1–E6

    CAS  PubMed  Google Scholar 

  28. Tinel N, Diochot S, Borsotto M, Lazdunski M, Barhanin J (2000) KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J 19:6326–6330

    Google Scholar 

  29. Tinel N, Diochot S, Lauritzen I, Barhanin J, Lazdunski M, Borsotto M (2000) M-type KCNQ2-KCNQ3 potassium channels are modulated by the KCNE2 subunit. FEBS Lett 480:137–141

    Article  CAS  PubMed  Google Scholar 

  30. Tzounopoulos T, Maylie J, Adelman JP (1995) Induction of endogenous channels by high levels of heterologous membrane proteins in Xenopus oocytes. Biophys J 69:904–908

    CAS  PubMed  Google Scholar 

  31. Ulens C, Tytgat J (2001) Functional heteromerization of HCN1 and HCN2 pacemaker channels. J Biol Chem 276:6069–6072

    CAS  PubMed  Google Scholar 

  32. Vaccari T, Moroni A, Rocchi M, Gorza L, Bianchi ME, Beltrame M, DiFrancesco D (1999) The human gene coding for HCN2, a pacemaker channel of the heart. Biochim Biophys Acta 1446:419–425

    Article  CAS  PubMed  Google Scholar 

  33. Van Ginneken AC, Giles W (1991) Voltage clamp measurements of the hyperpolarization-activated inward current I f in single cells from rabbit sino-atrial node. J Physiol (Lond) 434:57–83

    Google Scholar 

  34. Villmann C, Bull L, Hollmann M (1997) Kainate binding proteins possess functional ion channel domains. J Neurosci 17:7634–7643

    CAS  PubMed  Google Scholar 

  35. Weerapura M, Nattel S, Chartier D, Caballero R, Hebert TE (2002) A comparison of currents carried by HERG, with and without coexpression of MiRP1, and the native rapid delayed rectifier current. Is MiRP1 the missing link? J Physiol (Lond) 540:15–27

    Google Scholar 

  36. Yanagihara K, Irisawa H (1980). Potassium current during the pacemaker depolarization in rabbit sinoatrial node cell. Pflugers Arch 388:255–260

    CAS  PubMed  Google Scholar 

  37. Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, Kodama I (2001) I f current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 88:536–542

    CAS  PubMed  Google Scholar 

  38. Yu H, Wu J, Potapova I, Wymore RT, Holmes B, Zuckerman J, Pan Z, Wang H, Shi W, Robinson RB, El-Maghrabi MR, Benjamin W, Dixon J, McKinnon D, Cohen IS, Wymore R (2001) MinK-related peptide 1: a beta subunit for the HCN ion channel subunit family enhances expression and speeds activation. Circ Res 88:E84–E87

    CAS  PubMed  Google Scholar 

  39. Zhang M, Jiang M, Tseng GN (2001) MinK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as beta subunit of cardiac transient outward channel? Circ Res 88:1012–1019

    Google Scholar 

Download references

Acknowledgements

We thank Simone Stengelin for excellent technical support, Hans-Willi Jansen for providing the HCN4 cell line, Christian Lerche for KCNE cDNA clones, and Martin Biel for the HCN4 cDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Decher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decher, N., Bundis, F., Vajna, R. et al. KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents. Pflugers Arch - Eur J Physiol 446, 633–640 (2003). https://doi.org/10.1007/s00424-003-1127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1127-7

Keywords

Navigation