Skip to main content
Log in

Dual regulation of the ATP-sensitive potassium channel by activation of cGMP-dependent protein kinase

  • Ion Channels
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels couple cellular metabolic status to membrane electrical activity. In this study, we performed patch-clamp recordings to investigate how cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) regulates the function of KATP channels, using both transfected human SH-SY5Y neuroblastoma cells and embryonic kidney (HEK) 293 cells. In intact SH-SY5Y cells, the single-channel currents of Kir6.2/sulfonylurea receptor (SUR) 1 channels, a neuronal-type KATP isoform, were enhanced by zaprinast, a cGMP-specific phosphodiesterase inhibitor; this enhancement was abolished by inhibition of PKG, suggesting a stimulatory role of cGMP/PKG signaling in regulating the function of neuronal KATP channels. Similar effects of cGMP accumulation were confirmed in intact HEK293 cells expressing Kir6.2/SUR1 channels. In contrast, direct application of purified PKG suppressed rather than activated Kir6.2/SUR1 channels in excised, inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels expressed without the SUR subunit were not modulated by zaprinast or purified PKG. Lastly, reconstitution of the soluble guanylyl cyclase/cGMP/PKG signaling pathway by generation of nitric oxide led to Kir6.2/SUR1 channel activation in both cell types. Taken together, here, we report novel findings that PKG exerts dual functional regulation of neuronal KATP channels in a SUR subunit-dependent manner, which may provide new means of therapeutic intervention for manipulating neuronal excitability and/or survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adachi H, Kodama K, Ishihara H (1999) Evaluation of erectile response by continuous measurement of penile diameter in rats. J Pharmacol Toxicol Methods 41:147–152

    Article  PubMed  CAS  Google Scholar 

  2. Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20:101–135

    Article  PubMed  CAS  Google Scholar 

  3. Aguilar-Bryan L, Clement JP IV, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    PubMed  CAS  Google Scholar 

  4. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP IV, Boyd AE III, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the β-cell high-affinity sulphonylurea receptor: a regulator of insulin secretion. Science 268:423–426

    Article  PubMed  CAS  Google Scholar 

  5. Ahern GP, Klyachko VA, Jackson MB (2002) cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci 25:510–517

    Article  PubMed  CAS  Google Scholar 

  6. Andoh T, Chock PB, Chiueh CC (2002) Preconditioning-mediated neuroprotection: role of nitric oxide, cGMP, and new protein expression. Ann NY Acad Sci 962:1–7

    Article  PubMed  CAS  Google Scholar 

  7. Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074

    Article  PubMed  CAS  Google Scholar 

  8. Ashcroft FM (1996) Mechanisms of the glycaemic effects of sulfonylureas. Horm Metab Res 28:456–463

    PubMed  CAS  Google Scholar 

  9. Ashcroft FM, Gribble FM (1998) Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci 21:288–294

    Article  PubMed  CAS  Google Scholar 

  10. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54:87–143

    Article  PubMed  CAS  Google Scholar 

  11. Ashford ML, Boden PR, Treherne JM (1990) Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch 415:479–483

    Article  PubMed  CAS  Google Scholar 

  12. Babenko AP, Aguilar-Bryan L, Bryan J (1998) A view of SUR/Kir6.X, KATP channels. Annu Rev Physiol 60:667–687

    Article  PubMed  CAS  Google Scholar 

  13. Beguin P, Nagashima K, Nishimura M, Gonoi T, Seino S (1999) PKA-mediated phosphorylation of the human KATP channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. EMBO J 18:4722–4732

    Article  PubMed  CAS  Google Scholar 

  14. Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    Article  PubMed  CAS  Google Scholar 

  15. Boulton CL Irving AJ, Southam E, Potier B, Garthwaite J, Collingridge GL (1994) The nitric oxide-cyclic GMP pathway and synaptic depression in rat hippocampal slices. Eur J Neurosci 6:1528–1535

    Article  Google Scholar 

  16. Brown DA, Chicco AJ, Jew KN, Johnson MS, Lynch JM, Watson PA, Moore RL (2005) Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol 569:913–924

    Article  PubMed  CAS  Google Scholar 

  17. Chan KW, Zhang H, Logothetis DE (2003) N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J 22:3833–3843

    Article  PubMed  CAS  Google Scholar 

  18. Clement JP IV, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of KATP channel subunits. Neuron 18:827–838

    Article  PubMed  CAS  Google Scholar 

  19. Colquhoun D, Sakmann B (1985) Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol 369:501–557

    PubMed  CAS  Google Scholar 

  20. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97:329–336

    Article  PubMed  CAS  Google Scholar 

  21. Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol 290:H1808–H1817

    Article  PubMed  CAS  Google Scholar 

  22. Das A, Smolenski A, Lohmann SM, Kukreja RC (2006) Cyclic GMP-dependent protein kinase Iα attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J Biol Chem 281:38644–38652

    Article  PubMed  CAS  Google Scholar 

  23. Fiscus RR (2002) Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11:175–190

    Article  PubMed  CAS  Google Scholar 

  24. Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD (1999) Cyclic cGMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem 274:10927–10935

    Article  PubMed  CAS  Google Scholar 

  25. Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706

    Article  PubMed  CAS  Google Scholar 

  26. Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    Article  PubMed  CAS  Google Scholar 

  27. Gribble FM, Tucker SJ, Ashcroft FM (1997) The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J 16:1145–1152

    Article  PubMed  CAS  Google Scholar 

  28. Gribble FM, Tucker SJ, Haug T, Ashcroft FM (1998) MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit. Proc Natl Acad Sci USA 95:7185–7190

    Article  PubMed  CAS  Google Scholar 

  29. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  30. Han J, Kim N, Kim E, Ho WK, Earm YE (2001) Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem 276:22140–22147

    Article  PubMed  CAS  Google Scholar 

  31. Han J, Kim N, Joo H, Kim E, Earm YE (2002) ATP-sensitive K+ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 283:H1545–H1554

    PubMed  CAS  Google Scholar 

  32. Hayabuchi Y, Davies NW, Standen NB (2001) Angiotensin II inhibits rat arterial KATP channels by inhibiting steady-state protein kinase A activity and activating protein kinase Cɛ. J Physiol 530:193–205

    Article  PubMed  CAS  Google Scholar 

  33. Haynes JM, Cook AL (2006) Protein kinase G-induced activation of KATP channels reduces contractility of human prostate tissue. Prostate 66:377–385

    Article  PubMed  CAS  Google Scholar 

  34. Horn R (1987) Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel. Biophy J 51:255–263

    CAS  Google Scholar 

  35. Hu K, Li GR, Nattel S (1999) Adenosine-induced activation of ATP-sensitive K+ channels in excised membrane patches is mediated by PKC. Am J Physiol Heart Circ Physiol 276:H488–H495

    CAS  Google Scholar 

  36. Ignarro LJ (1991) Heme-dependent activation of guanylate cyclase by nitric oxide: a novel signal transduction mechanism. Blood Vessels 28:67–73

    PubMed  CAS  Google Scholar 

  37. Inagaki N, Gonoi T, Clement JP IV, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulphonylurea receptor. Science 270:1166–1169

    Article  PubMed  CAS  Google Scholar 

  38. Inagaki N, Gonoi T, Clement JP IV, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S (1996) A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–1017

    Article  PubMed  CAS  Google Scholar 

  39. Inagaki N, Gonoi T, Seino S (1997) Subunit stoichiometry of the pancreatic β-cell ATP-sensitive K+ channel. FEBS Lett 409:232–236

    Article  PubMed  CAS  Google Scholar 

  40. Isomoto S, Kondo C, Kurachi Y (1997) Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn J Physiol 47:11–39

    Article  PubMed  CAS  Google Scholar 

  41. Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y, Kurachi Y (1996) A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem 271:24321–24324

    Article  PubMed  CAS  Google Scholar 

  42. Jang Y, Wang H, Xi J, Mueller RA, Norfleet EA, Xu Z (2007) NO mobilizes intracellular Zn2+ via cGMP/PKG signaling pathway and prevents mitochondrial oxidant damage in cardiomyocytes. Cardiovasc Res 75:426–433

    Article  PubMed  CAS  Google Scholar 

  43. John SA, Monck JR, Weiss JN, Ribalet B (1998) The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6.2 K+ channels linked to the green fluorescent protein in human embryonic kidney cells (HEK293). J Physiol 510:333–345

    Article  PubMed  CAS  Google Scholar 

  44. Nakamura K, Hirano J, Itazawa S, Kubokawa M (2002) Protein kinase G activates inwardly rectifying K+ channel. in cultured human proximal tubule cells. Am J Physiol Renal Physiol 283:F784–F791

    PubMed  Google Scholar 

  45. Kubo M, Nakaya Y, Matsuoka S, Saito K, Kuroda Y (1994) Atrial natriuretic factor and isosorbide dinitrate modulate the gating of ATP-sensitive K+ channels in cultured vascular smooth muscle cells. Circ Res 74:471–476

    PubMed  CAS  Google Scholar 

  46. Kukreja RC, Ockaili R, Salloum F, Yin C, Hawkins J, Das A, Xi L (2004) Cardioprotection with phosphodiesterase-5 inhibition—a novel preconditioning strategy. J Mol Cell Cardiol 36:165–173

    Article  PubMed  CAS  Google Scholar 

  47. Lawson CS, Downey JM (1993) Precondition: state of the art myocardial protection. Cardiovascular Res 27:542–550

    Article  CAS  Google Scholar 

  48. Light PE, Allen BG, Walsh MP, French RJ (1995) Regulation of adenosine triphosphate-sensitive potassium channel from rabbit ventricular myocytes by protein kinase C and type 2A protein phosphatase. Biochemistry 34:7252–7257

    Article  PubMed  CAS  Google Scholar 

  49. Light PE, Bladen C, Winkfein RJ, Walsh MP, French RJ (2000) Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels. Proc Natl Acad Sci USA 97:9058–9063

    Article  PubMed  CAS  Google Scholar 

  50. Lin YF, Jan YN, Jan LY (2000) Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cell. EMBO J 19:942–955

    Article  PubMed  CAS  Google Scholar 

  51. Lin YF, Raab-Graham K, Jan YN, Jan LY (2004) Nitric oxide stimulation of ATP-sensitive potassium channels: Involvement of Ras/MAPK kinase pathway and contribution to neuroprotection. Proc Natl Acad Sci USA 101:7799–7804

    Article  PubMed  CAS  Google Scholar 

  52. Liss B, Bruns R, Roeper J (1999) Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J 18:833–846

    Article  PubMed  CAS  Google Scholar 

  53. Mao X, Chai Y, Lin YF (2007) Dual regulation of ATP-sensitive potassium channels by caffeine. Am J Physiol Cell Physiol 292:C2239–C2258

    Article  PubMed  CAS  Google Scholar 

  54. Matsuo M, Kimura Y, Ueda K (2005) KATP channel interaction with adenine nucleotides. J Mol Cell Cardiol 38:907–916

    Article  PubMed  CAS  Google Scholar 

  55. McManus OB, Magleby KL (1988) Kinetic states and modes of single large-conductance calcium activated potassium channels in cultured rat skeletal muscle. J Physiol 402:79–120

    PubMed  CAS  Google Scholar 

  56. Meriney SD, Gray DB, Pilar GR (1994) Somatostatin-induced inhibition of neuronal Ca2+ current modulated by cGMP-dependent protein kinase. Nature 369:336–339

    Article  PubMed  CAS  Google Scholar 

  57. Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, Seino S (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512

    PubMed  CAS  Google Scholar 

  58. Miki T, Seino S (2005) Roles of KATP channels as metabolic sensors in acute metabolic changes. J Mol Cell Cardiol 38:917–925

    Article  PubMed  CAS  Google Scholar 

  59. Minami K, Miki T, Kadowaki T, Seino S (2004) Roles of ATP-sensitive K+ channels as metabolic sensors: studies of Kir6.x null mice. Diabetes 53:S176–S180

    Article  PubMed  CAS  Google Scholar 

  60. Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476

    Article  PubMed  CAS  Google Scholar 

  61. Nichols CG, Shyng S-L, Nestorowicz A, Glaser B, Clement JP IV, Gonzalez G, Aguilar-Bryan L, Permutt MA, Bryan J (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272:1785–1787

    Article  PubMed  CAS  Google Scholar 

  62. Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annu Rev Physiol 59:171–191

    Article  PubMed  CAS  Google Scholar 

  63. Okuyama Y, Yamada M, Kondo C, Satoh E, Isomoto S, Shindo T, Horio Y, Kitakaze M, Hori M, Kurachi Y (1998) The effects of nucleotides and potassium channel openers on SUR2A/Kir6.2 complex K+ channel expressed in a mammalian cell line, HEK293T cells. Pflügers Arch 435:595–603

    Article  PubMed  CAS  Google Scholar 

  64. Oldenburg O, Qin Q, Krieg T, Yang X-M, Philipp S, Critz SD, Cohen MV, Downey JM (2004) Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol 286:H468–H476

    Article  PubMed  CAS  Google Scholar 

  65. Park JH, Straub VA, O’Shea M (1998) Anterograde signaling by nitric oxide: characterization and in vitro reconstitution of an identified nitrergic synapse. J Neurosci 18:5463–5476

    PubMed  CAS  Google Scholar 

  66. Proks P, Lippiat JD (2006) Membrane ion channels and diabetes. Curr Pharm Des 12:485–501

    Article  PubMed  CAS  Google Scholar 

  67. Quayle JM, Bonev AD, Brayden JE, Nelson MT (1994) Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A. J Physiol 475:9–13

    PubMed  CAS  Google Scholar 

  68. Quayle JM, Nelson MT (1997) ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Phyiol Rev 77:1165–1232

    CAS  Google Scholar 

  69. Roper J, Ashcroft FM (1995) Metabolic inhibition and low central ATP activate K-ATP channels in rat dopaminergic substantia nigra neurons. Pflügers Arch 430:44–54

    Article  PubMed  CAS  Google Scholar 

  70. Ropero AB, Fuentes E, Rovira JM, Ripoll C, Soria B, Nadal A (1999) Non-genomic actions of 17β-oestradiol in mouse pancreatic β-cells are mediated by a cGMP-dependent protein kinase. J Physiol 521(2):397–407

    Article  PubMed  CAS  Google Scholar 

  71. Routh VH, McArdle JJ, Levin BE (1997) Phosphorylation modulates the activity of the ATP-sensitive K+ channel in ventromedial hypothalamic nucleus. Brain Res 778:107–119

    Article  PubMed  CAS  Google Scholar 

  72. Sakura H, Ämmälä C, Smith PA, Gribble FM, Ashcroft FM (1995) Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel expressed in pancreatic β-cells, brain, heart and skeletal muscle. FEBS Lett 377:338–344

    Article  PubMed  CAS  Google Scholar 

  73. Sakuta H, Okamoto K, Watanabe Y (1993) Modification by cGMP of glibenclamide-sensitive K+ currents in Xenopus oocytes. Jpn J Pharmacol 61:259–262

    Article  PubMed  CAS  Google Scholar 

  74. Sakuta H, Okamoto K, Tandai M (1994) Atrial natriuretic factor potentiates glibenclamide-sensitive K+ currents via the activation of receptor guanylate cyclase in follicle-enclosed Xenopus oocytes. Eur J Pharmacol 267:281–287

    Article  PubMed  CAS  Google Scholar 

  75. Seino S, Inagaki N, Namba N, Wang CH, Kotake K, Nagashima K, Miki T, Aguilar-Bryan L, Bryan J, Gonoi T (1997) Molecular basis of functional diversity of ATP-sensitive K+ channel. Jpn J Physiol 47 (Suppl 1):S3–S4

    PubMed  Google Scholar 

  76. Seutin V, Shen K-Z, North R, Johnson S (1996) Sulphonylurea-sensitive potassium current evoked by sodium loading in rat midbrain dopamine neurons. Neuroscience 71:709–719

    Article  PubMed  CAS  Google Scholar 

  77. Shyng S-L, Ferrigni T, Nichols CG (1997) Regulation of KATP channel activity by diazoxide and MgADP: distinct functions of the two nucleotide binding folds of the sulphonylurea receptor. J Gen Physiol 110:643–654

    Article  PubMed  CAS  Google Scholar 

  78. Shyng S-L, Nichols CG (1997) Octameric stoichiometry of KATP channel complex. J Gen Physiol 110:655–664

    Article  PubMed  CAS  Google Scholar 

  79. Sigworth FJ, Sine SM (1987) Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J 52:1047–1054

    PubMed  CAS  Google Scholar 

  80. Stanford I, Lacey M (1995) Regulation of potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulphonylureas tolbutamine and glibenclamide. J Neurosci 15:4651–4657

    PubMed  CAS  Google Scholar 

  81. Thorneloe KS, Maruyama Y, Malcolm AT, Light PE, Walsh MP, Cole WC (2002) Protein kinase C modulation of recombinant ATP-sensitive K+ channels composed of Kir6.1 and/or Kir6.2 expressed with SUR2B. J Physiol 541:65–80

    Article  PubMed  CAS  Google Scholar 

  82. Tsuura Y, Ishida H, Hayashi S, Sakamoto K, Horie M, Seino Y (1994) Nitric oxide opens ATP-sensitive K+ channels through suppression of phosphofructokinase activity and inhibits glucose-induced insulin release in pancreatic beta cells. J Gen Physiol 104:1079–1098

    Article  PubMed  CAS  Google Scholar 

  83. Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K-channels in the absence of the sulphonylurea receptor. Nature 387:179–183

    Article  PubMed  CAS  Google Scholar 

  84. Wang X, Robinson PJ (1997) Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. J Neurochem 68:443–456

    Article  PubMed  CAS  Google Scholar 

  85. Watts A, Hicks G, Henderson G (1995) Putative postnatal pre- and postsynaptic ATP-sensitive potassium channels in the rat substantia nigra in vitro. J Neurosci 15:3065–3074

    PubMed  CAS  Google Scholar 

  86. Wellman GC, Quayle JM, Standen NB (1998) ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. J Physiol 507:117–129

    Article  PubMed  CAS  Google Scholar 

  87. Wu BN, Lin RJ, Lo YC, Shen KP, Wang CC, Lin YT, Chen IJ (2004) KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium, cyclic nucleotides and K+ channels. Br J Pharmacol 142:1105–1114

    Article  PubMed  CAS  Google Scholar 

  88. Yamada K, Ji JJ, Yuan H, Miki T, Sato S, Horimoto N, Shimizu T, Seino S, Inagaki N (2001) Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292:1543–1546

    Article  PubMed  CAS  Google Scholar 

  89. Yokoshiki H, Sunagawa M, Seki T, Sperelakis N (1998) ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol Cell Physiol 274:C25–C37

    CAS  Google Scholar 

  90. Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane KATP channels. Neuron 22:537–548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Susumu Seino (Kobe University, Chuo-ku, Japan) and Dr. Joseph Bryan (Baylor College of Medicine, Houston, TX) for the kind gifts of cDNA clones of hamster SUR1, rat SUR2A, and mouse Kir6.2. The cDNA of Kir6.2FL4A was a kind gift from Dr. Blanche Schwappach (University of Heidelberg, Heidelberg, Germany). The single-channel analysis program Intrv5 was generously provided by Drs. Barry Pallotta (University of North Carolina, Chapel Hill) and Janet Fisher (University of South Carolina, Columbia, SC). This study was supported by UC Davis seed fund (Y.F.L.), UC Davis Health System Research Award (Y.F.L.), and American Heart Association Scientist Development Grant (Y.F.L.) and was conducted in a facility constructed with support from Research Facilities Improvement Program Grant number C06 RR-12088-01 from the National Center for Research Resources, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Fung Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, Y., Lin, YF. Dual regulation of the ATP-sensitive potassium channel by activation of cGMP-dependent protein kinase. Pflugers Arch - Eur J Physiol 456, 897–915 (2008). https://doi.org/10.1007/s00424-008-0447-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0447-z

Keywords

Navigation