Skip to main content
Log in

The multiple actions of NO

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Studies in the last two decades have firmly established that nitric oxide (NO) exerts a broad range of effects on bodily functions including muscle contractility, platelet aggregation, metabolism, neuronal activity, and immune responses. The underlying mechanisms rely primarily on elevating guanosine 3′,5′-cyclic monophosphate due to the stimulation of soluble guanylyl cyclase, inhibiting mitochondria respiration by the action on cytochrome C oxidase, and nitrosylating proteins and enzymes. Under pathophysiological conditions, an increased production of NO concurrently with an enhanced generation of superoxide leads to the formation of peroxynitrite, a potent oxidative agent, and thus tissue injuries. This article intends to provide a brief review on the effects of NO in the modulations of muscle contractility, platelet aggregation, metabolism, neuronal activity, and immune responses. The actions of NO vary depending on the interactions between this gaseous molecule, its derivates, and their effectors as well as the local redox environments. Considering the complexity of these interactions and the widespread presence of NO in various body systems and cell types, there is no doubt that this area of research will remain very challenging and rewarding in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schöneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207

    Article  CAS  PubMed  Google Scholar 

  2. Almeida A, Moncada S, Bolaños JP (2004) Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 6:45–51

    Article  CAS  PubMed  Google Scholar 

  3. Antl M, von Brühl ML, Eiglsperger C, Werner M, Konrad I, Kocher T, Wilm M, Hofmann F, Massberg S, Schlossmann J (2007) IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood 109:552–559

    Article  CAS  PubMed  Google Scholar 

  4. Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534

    Article  CAS  PubMed  Google Scholar 

  5. Balon TW, Nadler JL (1997) Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 82:359–363

    CAS  PubMed  Google Scholar 

  6. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  7. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  8. Bolaños JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-Fernandez S, Almeida A (2008) Regulation of glycolysis and pentose-phosphate pathway by nitric oxide: impact on neuronal survival. Biochim Biophys Acta 1777:789–793

    Article  PubMed  Google Scholar 

  9. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853

    Article  CAS  PubMed  Google Scholar 

  10. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Article  CAS  PubMed  Google Scholar 

  11. Brookes PS, Shiva S, Patel RP, Darley-Usmar VM (2002) Measurement of mitochondrial respiratory thresholds and the control of respiration by nitric oxide. Methods Enzymol 359:305–319

    Article  CAS  PubMed  Google Scholar 

  12. Carreras MC, Poderoso JJ (2007) Mitochondrial nitric oxide in the signaling of cell integrated responses. Am J Physiol Cell Physiol 292:C1569–C1580

    Article  CAS  PubMed  Google Scholar 

  13. Curran RD, Ferrari FK, Kispert PH, Stadler J, Stuehr DJ, Simmons RL, Billiar TR (1991) Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis. FASEB J 5:2085–2092

    CAS  PubMed  Google Scholar 

  14. Derakhshan B, Hao G, Gross SS (2007) Balancing reactivity against selectivity: the evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxide. Cardiovasc Res 75:210–219

    Article  CAS  PubMed  Google Scholar 

  15. Dhanakoti S, Gao Y, Nguyen MQ, Raj JU (2000) Involvement of cGMP-dependent protein kinase in the relaxation of ovine pulmonary arteries to cGMP and cAMP. J Appl Physiol 88:1637–1642

    CAS  PubMed  Google Scholar 

  16. Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531

    Article  CAS  PubMed  Google Scholar 

  17. Eu JP, Sun J, Xu L, Stamler JS, Meissner G (2000) The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell 102:499–509

    Article  CAS  PubMed  Google Scholar 

  18. Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, Barski JJ, Meyer M, Konnerth A, De Zeeuw CI, Hofmann F (2003) Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol 163:295–302

    Article  CAS  PubMed  Google Scholar 

  19. Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560

    Article  CAS  PubMed  Google Scholar 

  20. Francis SH, Blount MA, Zoraghi R, Corbin JD (2005) Molecular properties of mammalian proteins that interact with cGMP: protein kinases, cation channels, phosphodiesterases, and multi-drug anion transporters. Front Biosci 10:2097–2117

    Article  CAS  PubMed  Google Scholar 

  21. Friebe A, Koesling D (2009) The function of NO-sensitive guanylyl cyclase: what we can learn from genetic mouse models. Nitric Oxide 21:149–156

    Article  CAS  PubMed  Google Scholar 

  22. Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    CAS  PubMed  Google Scholar 

  23. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  CAS  PubMed  Google Scholar 

  24. Gao Y, Tolsa J-F, Shen H, Raj JU (1998) Effect of selective phosphodiesterase inhibitors on the responses of ovine pulmonary veins to prostaglandin E2. J Appl Physiol 84:13–18

    CAS  PubMed  Google Scholar 

  25. Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J NeuroSci 27:2783–2802

    Article  PubMed  Google Scholar 

  26. Garthwaite G, Bartus K, Malcolm D, Goodwin D, Kollb-Sielecka M, Dooldeniya C, Garthwaite J (2006) Signaling from blood vessels to CNS axons through nitric oxide. 1:. J Neurosci 26:7730–7740

    Article  CAS  PubMed  Google Scholar 

  27. Godecke A, Heinicke T, Kamkin A, Kiseleva I, Strasser RH, Decking UK, Stumpe T, Isenberg G, Schrader J (2001) Inotropic response to beta-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol 532:195–204

    Article  CAS  PubMed  Google Scholar 

  28. Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 287:L262–L268

    Article  CAS  PubMed  Google Scholar 

  29. Gyurko R, Leupen S, Huang PL (2006) Deletion of exon 6 of the neuronal nitric oxide synthase gene in mice results in hypogonadism and infertility. Endocrinology 143:2767–2774

    Article  Google Scholar 

  30. Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21:92–103

    Article  CAS  PubMed  Google Scholar 

  31. Hardie DG (2004) The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117(5479–54):87

    Google Scholar 

  32. Hirschfield W, Moody MR, O’Brien WE, Gregg AR, Bryan RM Jr, Reid MB (2000) Nitric oxide release and contractile properties of skeletal muscles from mice deficient in type III NOS. Am J Physiol Regul Integr Comp Physiol 278:R95–R100

    CAS  PubMed  Google Scholar 

  33. Hofmann F, Bernhard D, Lukowski R, Weinmeister P (2009) cGMP-regulated protein kinases (cGK). Handb Exp Pharmacol 191:137–162

    Article  CAS  PubMed  Google Scholar 

  34. Hurt KJ, Sezen SF, Champion HC, Crone JK, Palese MA, Huang PL, Sawa A, Luo X, Musicki B, Snyder SH, Burnett AL (2006) Alternatively spliced neuronal nitric oxide synthase mediates penile erection. Proc Natl Acad Sci USA 103:3440–3443

    Article  CAS  PubMed  Google Scholar 

  35. Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, del Soldato P (2001) Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 98:4202–4208

    Article  CAS  PubMed  Google Scholar 

  36. Ito M, Nakano T, Erdodi F, Hartshorne DJ (2004) Myosin phosphatase: structure, regulation and function. Mol Cell Biochem 259:197–209

    Article  CAS  PubMed  Google Scholar 

  37. Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  CAS  PubMed  Google Scholar 

  38. Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970

    Article  CAS  PubMed  Google Scholar 

  39. Korhonen R, Lahti A, Kankaanranta H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4:471–479

    Article  CAS  PubMed  Google Scholar 

  40. Laroux FS, Lefer DJ, Kawachi S, Scalia R, Cockrell AS, Gray L, Van der Heyde H, Hoffman JM, Grisham MB (2000) Role of nitric oxide in the regulation of acute and chronic inflammation. Antioxid Redox Signal 2:391–396

    Article  CAS  PubMed  Google Scholar 

  41. Laver JR, Stevanin TM, Messenger SL, Lunn AD, Lee ME, Moir JW, Poole RK, Read RC (2009) Bacterial nitric oxide detoxification prevents host cell S-nitrosothiol formation: a novel mechanism of bacterial pathogenesis. FASEB J (in press)

  42. Le Gouill E, Jimenez M, Binnert C, Jayet PY, Thalmann S, Nicod P, Scherrer U, Vollenweider P (2007) Endothelial nitric oxide synthase (eNOS) knockout mice have defective mitochondrial beta-oxidation. Diabetes 56:2690–2696

    Article  PubMed  Google Scholar 

  43. Mannick JB (2006) Immunoregulatory and antimicrobial effects of nitrogen oxides. Proc Am Thorac Soc 3:161–165

    Article  CAS  PubMed  Google Scholar 

  44. Mason MG, Shepherd M, Nicholls P, Dobbin PS, Dodsworth KS, Poole RK, Cooper CE (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat Chem Biol 5:94–96

    Article  CAS  PubMed  Google Scholar 

  45. Massberg S, Grüner S, Konrad I, Garcia Arguinzonis MI, Eigenthaler M, Hemler K, Kersting J, Schulz C, Muller I, Besta F, Nieswandt B, Heinzmann U, Walter U, Gawaz M (2004) Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice. Blood 103:136–142

    Article  CAS  PubMed  Google Scholar 

  46. Massberg S, Sausbier M, Klatt P, Bauer M, Pfeifer A, Siess W, Fassler R, Ruth P, Krombach F, Hofmann F (1999) Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′, 5′-monophosphate kinase I. J Exp Med 189:1255–1264

    Article  CAS  PubMed  Google Scholar 

  47. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  48. Niedbala W, Cai B, Liew FY (2006) Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis 65(Suppl 3):iii37–iii40

    Article  PubMed  Google Scholar 

  49. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  CAS  PubMed  Google Scholar 

  50. Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304

    Article  CAS  PubMed  Google Scholar 

  51. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  Google Scholar 

  52. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  53. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, Hurtado-Ziola N, Nizet V, Johnson RS (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115:1806–1815

    Article  CAS  PubMed  Google Scholar 

  54. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszódi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fässler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17:3045–3051

    Article  CAS  PubMed  Google Scholar 

  55. Poderoso JJ (2009) The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide. Arch Biochem Biophys 484:214–2120

    Article  CAS  PubMed  Google Scholar 

  56. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  CAS  PubMed  Google Scholar 

  57. Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA 103:5379–5384

    Article  CAS  PubMed  Google Scholar 

  58. Reaume CJ, Sokolowski MB (2009) cGMP-dependent protein kinase as a modifier of behaviour. Handb Exp Pharmacol 191:423–443

    Article  CAS  PubMed  Google Scholar 

  59. Reid MB (2001) Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc 33:371–376

    Article  CAS  PubMed  Google Scholar 

  60. Roberts CK, Barnard RJ, Scheck SH, Balon TW (1997) Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent. Am J Physiol 273:E220–E225

    CAS  PubMed  Google Scholar 

  61. Rudolph V, Freeman BA (2009) Cardiovascular consequences when nitric oxide and lipid signaling converge. Circ Res 105:511–522

    Article  CAS  PubMed  Google Scholar 

  62. Schildknecht S, Ullrich V (2009) Peroxynitrite as regulator of vascular prostanoid synthesis. Arch Biochem Biophys 484:183–189

    Article  CAS  PubMed  Google Scholar 

  63. Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J, Casadei B, Chowienczyk P, Shah AM (2009) Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation 119:2656–2662

    Article  CAS  PubMed  Google Scholar 

  64. Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75:315–326

    Article  CAS  PubMed  Google Scholar 

  65. Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, Ziff EB (2007) A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 56:670–688

    Article  CAS  PubMed  Google Scholar 

  66. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    Article  CAS  PubMed  Google Scholar 

  67. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106:675–683

    Article  CAS  PubMed  Google Scholar 

  68. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    Article  CAS  PubMed  Google Scholar 

  69. Taylor CT, Moncada S (2009) Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol (in press)

  70. Toda N, Ayajiki K, Okamura T (2005) Nitric oxide and penile erectile function. Pharmacol Ther 106:233–266

    Article  CAS  PubMed  Google Scholar 

  71. Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61:62–97

    Article  CAS  PubMed  Google Scholar 

  72. Toda N, Herman AG (2005) Gastrointestinal function regulation by nitrergic efferent nerves. Pharmacol Rev 57:315–338

    Article  CAS  PubMed  Google Scholar 

  73. Toda N, Okamura T (2003) The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 55:271–324

    Article  CAS  PubMed  Google Scholar 

  74. Trochu J-N, Bouhour J-B, Kaley G, Hintze TH (2000) Role of endotheliumderived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 87:1108–1117

    CAS  PubMed  Google Scholar 

  75. Ullrich V, Kissner R (2006) Redox signaling: bioinorganic chemistry at its best. J Inorg Biochem 100:2079–2086

    Article  CAS  PubMed  Google Scholar 

  76. Vanhoutte PM (1989) Endothelium and control of vascular function. State of the art lecture. Hypertension 13:658–667

    CAS  PubMed  Google Scholar 

  77. Varga-Szabo D, Pleines I, Nieswandt B (2008) Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28:403–412

    Article  CAS  PubMed  Google Scholar 

  78. Walter U, Gambaryan S (2009) cGMP and cGMP-dependent protein kinase in platelets and blood cells. Handb Exp Pharmacol 191:533–548

    Article  CAS  PubMed  Google Scholar 

  79. Yao X, Leung PS, Kwan HY, Wong TP, Fong MW (1999) Rod-type cyclic nucleotide-gated cation channel is expressed in vascular endothelium and vascular smooth muscle cells. Cardiovasc Res 41:282–290

    Article  CAS  PubMed  Google Scholar 

  80. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662

    Article  CAS  PubMed  Google Scholar 

  81. Xu KY, Kuppusamy SP, Wang JQ, Li H, Cui H, Dawson TM, Huang PL, Burnett AL, Kuppusamy P, Becker LC (2003) Nitric oxide protects cardiac sarcolemmal membrane enzyme function and ion active transport against ischemia-induced inactivation. J Biol Chem 278:41798–41803

    Article  CAS  PubMed  Google Scholar 

  82. Zhang J, Xie Z, Dong Y, Wang S, Liu C, Zou MH (2008) Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem 283:27452–27461

    Article  CAS  PubMed  Google Scholar 

  83. Zinkernagel AS, Johnson RS, Nizet V (2007) Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 85:1339–1346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSFC Grant #30770789 and #30870938, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansheng Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y. The multiple actions of NO. Pflugers Arch - Eur J Physiol 459, 829–839 (2010). https://doi.org/10.1007/s00424-009-0773-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0773-9

Keywords

Navigation