Skip to main content
Log in

Endothelium-derived hyperpolarising factors and associated pathways: a synopsis

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The term endothelium-derived hyperpolarising factor (EDHF) was introduced in 1987 to describe the hypothetical factor responsible for myocyte hyperpolarisations not associated with nitric oxide (EDRF) or prostacyclin. Two broad categories of EDHF response exist. The classical EDHF pathway is blocked by apamin plus TRAM-34 but not by apamin plus iberiotoxin and is associated with endothelial cell hyperpolarisation. This follows an increase in intracellular [Ca2+] and the opening of endothelial SKCa and IKCa channels preferentially located in caveolae and in endothelial cell projections through the internal elastic lamina, respectively. In some vessels, endothelial hyperpolarisations are transmitted to myocytes through myoendothelial gap junctions without involving any EDHF. In others, the K+ that effluxes through SKCa activates myocytic and endothelial Ba2+-sensitive KIR channels leading to myocyte hyperpolarisation. K+ effluxing through IKCa activates ouabain-sensitive Na+/K+-ATPases generating further myocyte hyperpolarisation. For the classical pathway, the hyperpolarising “factor” involved is the K+ that effluxes through endothelial KCa channels. During vessel contraction, K+ efflux through activated myocyte BKCa channels generates intravascular K+ clouds. These compromise activation of Na+/K+-ATPases and KIR channels by endothelium-derived K+ and increase the importance of gap junctional electrical coupling in myocyte hyperpolarisations. The second category of EDHF pathway does not require endothelial hyperpolarisation. It involves the endothelial release of factors that include NO, HNO, H2O2 and vasoactive peptides as well as prostacyclin and epoxyeicosatrienoic acids. These hyperpolarise myocytes by opening various populations of myocyte potassium channels, but predominantly BKCa and/or KATP, which are sensitive to blockade by iberiotoxin or glibenclamide, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abderrahmane A, Salvail D, Dumoulin M, Garon J, Cadieux A, Rousseau E (1998) Direct activation of K(Ca) channel in airway smooth muscle by nitric oxide: involvement of a nitrothiosylation mechanism? Am J Respir Cell Mol Biol 19:485–497

    PubMed  CAS  Google Scholar 

  2. Absi M, Burnham MP, Weston AH, Harno E, Rogers M, Edwards G (2007) Effects of methyl beta-cyclodextrin on EDHF responses in pig and rat arteries; association between SKCa channels and caveolin-rich domains. Br J Pharmacol 151:332–340

    Article  PubMed  CAS  Google Scholar 

  3. Alexander SPH, Mathie A, Peters JA (2009) Guide to receptors and channels (GRAC), 4th edition. Br J Pharmacol 158(suppl 1):S1–S254

    Google Scholar 

  4. Andrews KL, Irvine JC, Tare M, Apostolopoulos J, Favaloro JL, Triggle CR, Kemp-Harper BK (2009) A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Br J Pharmacol 157:540–550

    Article  PubMed  CAS  Google Scholar 

  5. Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hashimoto K, Campbell WB, Falck JR, Michelakis ED (2003) Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11, 12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKCa channels. Circulation 107:769–776

    Article  PubMed  CAS  Google Scholar 

  6. Baron A, Frieden M, Bény JL (1997) Epoxyeicosatrienoic acids activate a high-conductance, Ca2+-dependent K+ channel on pig coronary artery endothelial cells. J Physiol 504:537–543

    Article  PubMed  CAS  Google Scholar 

  7. Barton M, Bény JL, d’Uscio LV, Wyss T, Noll G, Luscher TF (1998) Endothelium-independent relaxation and hyperpolarization to C-type natriuretic peptide in porcine coronary arteries. J Cardiovasc Pharmacol 31:377–383

    Article  PubMed  CAS  Google Scholar 

  8. Behm DJ, Ogbonna A, Wu C, Burns-Kurtis CL, Douglas SA (2009) Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: identification of a novel mechanism of vasodilation. J Pharmacol Exp Ther 328:231–239

    Article  PubMed  CAS  Google Scholar 

  9. Bény JL (1990) Endothelial and smooth muscle cells hyperpolarized by bradykinin are not dye coupled. Am J Physiol 258:H836–H841

    PubMed  Google Scholar 

  10. Bény JL, Schaad O (2000) An evaluation of potassium ions as endothelium-derived hyperpolarizing factor in porcine coronary arteries. Br J Pharmacol 131:965–973

    Article  PubMed  Google Scholar 

  11. Bény JL, von der Weid PY (1991) Hydrogen peroxide: an endogenous smooth muscle cell hyperpolarizing factor. Biochem Biophys Res Commun 176:378–384

    Article  PubMed  Google Scholar 

  12. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    PubMed  CAS  Google Scholar 

  13. Blatz AL, Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323:718–720

    Article  PubMed  CAS  Google Scholar 

  14. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853

    Article  PubMed  CAS  Google Scholar 

  15. Bolton TB, Clapp LH (1984) The diverse effects of noradrenaline and other stimulants on 86Rb and 42K efflux in rabbit and guinea-pig arterial muscle. J Physiol 355:43–63

    PubMed  CAS  Google Scholar 

  16. Bolton TB, Lang RJ, Takewaki T (1984) Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol 351:549–572

    PubMed  CAS  Google Scholar 

  17. Bradley KK, Jaggar JH, Bonev AD, Heppner TJ, Flynn ER, Nelson MT, Horowitz B (1999) Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. J Physiol 515:639–651

    Article  PubMed  CAS  Google Scholar 

  18. Brähler S, Kaistha A, Schmidt VJ, Wölfle SE, Busch C, Kaistha BP, Kacik M, Hasenau A-L, Grgic I, Si H, Bond CT, Adelman JP, Wulff H, de Wit C, Hoyer J, Köhler R (2009) Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 119:2323–2332

    Article  PubMed  CAS  Google Scholar 

  19. Burnham MP, Bychkov R, Félétou M, Richards GR, Vanhoutte PM, Weston AH, Edwards G (2002) Characterization of an apamin-sensitive small-conductance Ca2+-activated K+ channel in porcine coronary artery endothelium: relevance to EDHF. Br J Pharmacol 135:1133–1143

    Article  PubMed  CAS  Google Scholar 

  20. Bussemaker E, Popp R, Fisslthaler B, Larson CM, Fleming I, Busse R, Brandes RP (2003) Aged spontaneously hypertensive rats exhibit a selective loss of EDHF-mediated relaxation in the renal artery. Hypertension 42:562–568

    Article  PubMed  CAS  Google Scholar 

  21. Bychkov R, Burnham MP, Richards GR, Edwards G, Weston AH, Félétou M, Vanhoutte PM (2002) Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF. Br J Pharmacol 137:1346–1354

    Article  PubMed  CAS  Google Scholar 

  22. Campbell WB, Falck JR (2007) Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. Hypertension 49:590–596

    Article  PubMed  CAS  Google Scholar 

  23. Campbell W, Fleming I (2010) EETs and endothelium-dependent responses. Pflügers Arch (In press)

  24. Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ (2003) Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci USA 100:1426–1431

    Article  PubMed  CAS  Google Scholar 

  25. Chaytor AT, Evans WH, Griffith TM (1998) Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. J Physiol 508:561–573

    Article  PubMed  CAS  Google Scholar 

  26. Chen G, Suzuki H, Weston AH (1988) Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol 95:1165–1174

    PubMed  CAS  Google Scholar 

  27. Chrissobolis S, Ziogas J, Chu Y, Faraci FM, Sobey CG (2000) Role of inwardly rectifying K+ channels in K+-induced cerebral vasodilatation in vivo. Am J Physiol 279:H2704–H2712

    CAS  Google Scholar 

  28. Christ GJ, Spray DC, el-Sabban M, Moore LK, Brink PR (1996) Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ Res 79:631–646

    PubMed  CAS  Google Scholar 

  29. Coleman HA, Tare M, Parkington HC (2001) K+ currents underlying the action of endothelium-derived hyperpolarizing factor in guinea-pig, rat and human blood vessels. J Physiol 531:359–373

    Article  PubMed  CAS  Google Scholar 

  30. Coleman HA, Tare M, Parkington HC (2004) Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol 31:641–649

    Article  PubMed  CAS  Google Scholar 

  31. Corriu C, Félétou M, Canet E, Vanhoutte PM (1996) Endothelium-derived factors and hyperpolarization of the carotid artery of the guinea-pig. Br J Pharmacol, 959–964

  32. Crane GJ, Gallagher N, Dora KA, Garland CJ (2003) Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery. J Physiol 553:183–189

    Article  PubMed  CAS  Google Scholar 

  33. Deka DK, Brading AF (2004) Nitric oxide activates glibenclamide-sensitive K+ channels in urinary bladder myocytes through a c-GMP-dependent mechanism. Eur J Pharmacol 492:13–19

    Article  PubMed  CAS  Google Scholar 

  34. Dhein S (1998) Gap junction channels in the cardiovascular system: pharmacological and physiological modulation. Trends Pharmacol Sci 19:229–241

    Article  PubMed  CAS  Google Scholar 

  35. Dora KA, Gallagher NT, McNeish A, Garland CJ (2008) Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res 102:1247–1255

    Article  PubMed  CAS  Google Scholar 

  36. Dora KA, Garland CJ (2001) Properties of smooth muscle hyperpolarization and relaxation to K+ in the rat isolated mesenteric artery. Am J Physiol 280:H2424–H2429

    CAS  Google Scholar 

  37. Earley S, Gonzales AL, Crnich R (2009) Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-Activated K+ channels. Circ Res 104:987–994

    Article  PubMed  CAS  Google Scholar 

  38. Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–1279

    Article  PubMed  CAS  Google Scholar 

  39. Edwards G, Richards GR, Gardener MJ, Félétou M, Vanhoutte PM, Weston AH (2003) Roles of the inward-rectifier K+ channel and Na+/K+-ATPase in the hyperpolarization to K+ in rat mesenteric arteries. In: Vanhoutte PM (ed) EDHF 2002. Taylor & Francis, London, pp 309–317

    Google Scholar 

  40. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–272

    Article  PubMed  CAS  Google Scholar 

  41. Edwards G, Félétou M, Gardener MJ, Glen CD, Richards GR, Vanhoutte PM, Weston AH (2001) Further investigations into the endothelium-dependent hyperpolarizing effects of bradykinin and substance P in porcine coronary artery. Br J Pharmacol 133:1145–1153

    Article  PubMed  CAS  Google Scholar 

  42. Edwards G, Félétou M, Gardener MJ, Thollon C, Vanhoutte PM, Weston AH (1999) Role of gap junctions in the responses to EDHF in rat and guinea-pig small arteries. Br J Pharmacol 128:1788–1794

    Article  PubMed  CAS  Google Scholar 

  43. Edwards G, Gardener MJ, Félétou M, Brady G, Vanhoutte PM, Weston AH (1999) Further investigation of endothelium-derived hyperpolarizing factor (EDHF) in rat hepatic artery: studies using 1-EBIO and ouabain. Br J Pharmacol 128:1064–1070

    Article  PubMed  CAS  Google Scholar 

  44. Edwards G, Thollon C, Gardener MJ, Félétou M, Vilaine J, Vanhoutte PM, Weston AH (2000) Role of gap junctions and EETs in endothelium-dependent hyperpolarization of porcine coronary artery. Br J Pharmacol 129:1145–1154

    Article  PubMed  CAS  Google Scholar 

  45. Edwards G, Weston AH (1998) Endothelium-derived hyperpolarizing factor—a critical appraisal. Prog Drug Res 50:107–133

    PubMed  CAS  Google Scholar 

  46. Edwards G, Weston AH (2004) Potassium and potassium clouds in endothelium-dependent hyperpolarizations. Pharmacol Res 49:535–541

    Article  PubMed  CAS  Google Scholar 

  47. Ellis A, Li CG, Rand MJ (2000) Differential actions of l-cysteine on responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta. Br J Pharmacol 129:315–322

    Article  PubMed  CAS  Google Scholar 

  48. Félétou M, Vanhoutte PM (2006) EDHF, the complete story. Taylor & Francis CRC press, Boca Raton

    Google Scholar 

  49. Félétou M, Vanhoutte PM (1988) Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol 93:515–524

    PubMed  Google Scholar 

  50. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R (1999) Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 401:493–497

    Article  PubMed  CAS  Google Scholar 

  51. Fleming I, Rueben A, Popp R, Fisslthaler B, Schrodt S, Sander A, Haendeler J, Falck JR, Morisseau C, Hammock BD, Busse R (2007) Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arterioscler Thromb Vasc Biol 27:2612–2618

    Article  PubMed  CAS  Google Scholar 

  52. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat Cell Biol 3:121–127

    Article  PubMed  CAS  Google Scholar 

  53. Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD (1999) Cyclic GMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem 274:10927–10935

    Article  PubMed  CAS  Google Scholar 

  54. Fulton D, McGiff JC, Wolin MS, Kaminski P, Quilley J (1997) Evidence against a cytochrome P450-derived reactive oxygen species as the mediator of the nitric oxide-independent vasodilator effect of bradykinin in the perfused heart of the rat. J Pharmacol Exp Ther 280:702–709

    PubMed  CAS  Google Scholar 

  55. Furchgott RF, Jothianandan D (1991) Endothelium-dependent and-independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28:52–61

    PubMed  CAS  Google Scholar 

  56. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  57. Gao Y (2010) The multiple actions of NO. Pflügers Arch (In press)

  58. Garcia ML, Knaus HG, Munujos P, Slaughter RS, Kaczorowski GJ (1995) Charybdotoxin and its effects on potassium channels. Am J Physiol 269:C1–C10

    PubMed  CAS  Google Scholar 

  59. Garland CJ, Dora KA (2008) Evidence against C-type natriuretic peptide as an arterial ‘EDHF’. Br J Pharmacol 153:4–5

    Article  PubMed  CAS  Google Scholar 

  60. Gebremedhin D, Kaldunski M, Jacobs ER, Harder DR, Roman RJ (1996) Coexistence of two types of Ca2+-activated K+ channels in rat renal arterioles. Am J Physiol 270:F69–F81

    PubMed  CAS  Google Scholar 

  61. Gluais P, Edwards G, Weston A, Falck J, Vanhoutte P, Félétou M (2005) Role of SKCa and IKCa in endothelium-dependent hyperpolarizations of the guinea-pig isolated carotid artery. Br J Pharmacol 144:477–485

    Article  PubMed  CAS  Google Scholar 

  62. Gluais P, Edwards G, Weston AH, Vanhoutte PM, Félétou M (2005) Hydrogen peroxide and endothelium-dependent hyperpolarization in the guinea-pig carotid artery. Eur J Pharmacol 513:219–224

    Article  PubMed  CAS  Google Scholar 

  63. Griffith TM (2004) Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol 141:881–903

    Article  PubMed  CAS  Google Scholar 

  64. Griffith TM, Edwards DH, Lewis MJ, Newby AC, Henderson AH (1984) The nature of endothelium-derived vascular relaxant factor. Nature 308:645–647

    Article  PubMed  CAS  Google Scholar 

  65. Han J, Kim N, Joo H, Kim E, Earm YE (2002) ATP-sensitive K+ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol 283:H1545–H1554

    CAS  Google Scholar 

  66. Harno E, Edwards G, Geraghty AR, Ward DT, Dodd RH, Dauban P, Faure H, Ruat M, Weston AH (2008) Evidence for the presence of GPRC6A receptors in rat mesenteric arteries. Cell Calcium 44:210–219

    Article  PubMed  CAS  Google Scholar 

  67. Heberlein KR, Straub AC, Isakson BE (2009) The myoendothelial junction: breaking through the matrix? Microcirculation (New York, NY: 1994) 16:307–322

  68. Hecker M, Bara AT, Bauersachs J, Busse R (1994) Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol 481:407–414

    PubMed  CAS  Google Scholar 

  69. Hong D, Jaron D, Buerk DG, Barbee KA (2008) Transport-dependent calcium signaling in spatially segregated cellular caveolar domains. Am J Physiol 294:C856–C866

    Article  CAS  Google Scholar 

  70. Hou S, Heinemann SH, Hoshi T (2009) Modulation of BKCa channel gating by endogenous signaling molecules. Physiology 24:26–35

    Article  PubMed  CAS  Google Scholar 

  71. Irvine JC, Favaloro JL, Kemp-Harper BK (2003) NO- activates soluble guanylate cyclase and KV channels to vasodilate resistance arteries. Hypertension 41:1301–1307

    Article  PubMed  CAS  Google Scholar 

  72. Irvine JC, Favaloro JL, Widdop RE, Kemp-Harper BK (2007) Nitroxyl anion donor, Angeli’s salt, does not develop tolerance in rat isolated aortae. Hypertension 49:885–892

    Article  PubMed  CAS  Google Scholar 

  73. Irvine JC, Ritchie RH, Favaloro JL, Andrews KL, Widdop RE, Kemp-Harper BK (2008) Nitroxyl (HNO): the Cinderella of the nitric oxide story. Trends Pharmacol Sci 29:601–608

    Article  PubMed  CAS  Google Scholar 

  74. Jaggar JH, Leffler CW, Cheranov SY, Tcheranova D, Shuyu E, Cheng X (2002) Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ Res 91:610–617

    Article  PubMed  CAS  Google Scholar 

  75. Karashima T, Kuriyama H (1981) Electrical properties of smooth muscle cell membrane and neuromuscular transmission in the guinea-pig basilar artery. Br J Pharmacol 74:495–504

    PubMed  CAS  Google Scholar 

  76. Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC (1999) hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J Biol Chem 274:14838–14849

    Article  PubMed  CAS  Google Scholar 

  77. Kitamura K, Kuriyama H (1979) Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig. J Physiol 293:119–133

    PubMed  CAS  Google Scholar 

  78. Knot HJ, Zimmermann PA, Nelson MT (1996) Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K+ channels. J Physiol 492(Pt 2):419–430

    PubMed  CAS  Google Scholar 

  79. Kuriyama H, Suzuki H (1978) The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br J Pharmacol 64:493–501

    PubMed  CAS  Google Scholar 

  80. Lacy PS, Pilkington G, Hanvesakul R, Fish HJ, Boyle JP, Thurston H (2000) Evidence against potassium as an endothelium-derived hyperpolarizing factor in rat mesenteric small arteries. Br J Pharmacol 129:605–611

    Article  PubMed  CAS  Google Scholar 

  81. Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff MI, Nelson MT (2008) Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci USA 105:9627–9632

    Article  PubMed  Google Scholar 

  82. Lee YC, Martin E, Murad F (2000) Human recombinant soluble guanylyl cyclase: expression, purification, and regulation. Proc Natl Acad Sci USA 97:10763–10768

    Article  PubMed  CAS  Google Scholar 

  83. Leuranguer V, Vanhoutte PM, Verbeuren T, Félétou M (2008) C-type natriuretic peptide and endothelium-dependent hyperpolarization in the guinea-pig carotid artery. Br J Pharmacol 153:57–65

    Article  PubMed  CAS  Google Scholar 

  84. Li PL, Zou AP, Campbell WB (1997) Regulation of potassium channels in coronary arterial smooth muscle by endothelium-derived vasodilators. Hypertension 29:262–267

    PubMed  Google Scholar 

  85. Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275:11934–11942

    Article  PubMed  CAS  Google Scholar 

  86. Lucchesi PA, Belmadani S, Matrougui K (2005) Hydrogen peroxide acts as both vasodilator and vasoconstrictor in the control of perfused mouse mesenteric resistance arteries. J Hypertens 23:571–579

    Article  PubMed  CAS  Google Scholar 

  87. Martin W (2009) Nitroxyl anion-the universal signalling partner of endogenously produced nitric oxide? Br J Pharmacol 157:537–539

    Article  PubMed  CAS  Google Scholar 

  88. Mather S, Dora KA, Sandow SL, Winter P, Garland CJ (2005) Rapid endothelial cell-selective loading of connexin 40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res 97:399–407

    Article  PubMed  CAS  Google Scholar 

  89. Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T, Kunihiro I, Mukai Y, Hirakawa Y, Takeshita A (2002) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. Biochem Biophys Res Commun 290:909–913

    Article  PubMed  CAS  Google Scholar 

  90. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530

    Article  PubMed  CAS  Google Scholar 

  91. McGuire JJ, Hollenberg MD, Andrade-Gordon P, Triggle CR (2002) Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase-activated receptor 2 in mouse mesenteric arterioles. Br J Pharmacol 135:155–169

    Article  PubMed  CAS  Google Scholar 

  92. McNeish AJ, Sandow SL, Neylon CB, Chen MX, Dora KA, Garland CJ (2006) Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery. Stroke 37:1277–1282

    Article  PubMed  CAS  Google Scholar 

  93. Mombouli JV, Holzmann S, Kostner GM, Graier WF (1999) Potentiation of Ca2+ signaling in endothelial cells by 11, 12-epoxyeicosatrienoic acid. J Cardiovasc Pharmacol 33:779–784

    Article  PubMed  CAS  Google Scholar 

  94. Murphy ME, Brayden JE (1995) Apamin-sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries. J Physiol 489:723–734

    PubMed  CAS  Google Scholar 

  95. Murphy ME, Brayden JE (1995) Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 486:47–58

    PubMed  CAS  Google Scholar 

  96. Murphy ME, Sies H (1991) Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc Natl Acad Sci USA 88:10860–10864

    Article  PubMed  CAS  Google Scholar 

  97. Nelli S, Wilson WS, Laidlaw H, Llano A, Middleton S, Price AG, Martin W (2003) Evaluation of potassium ion as the endothelium-derived hyperpolarizing factor (EDHF) in the bovine coronary artery. Br J Pharmacol 139:982–988

    Article  PubMed  CAS  Google Scholar 

  98. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822

    PubMed  CAS  Google Scholar 

  99. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    PubMed  CAS  Google Scholar 

  100. Nilius B, Droogmans G, Wondergem R (2003) Transient receptor potential channels in endothelium: solving the calcium entry puzzle? Endothelium 10:5–15

    Article  PubMed  CAS  Google Scholar 

  101. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  102. Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle RM, Wilhelm J, Morty RE, Brau ME, Weir EK, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H (2006) Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ Res 98:1072–1080

    Article  PubMed  CAS  Google Scholar 

  103. Oltman CL, Kane NL, Fudge JL, Weintraub NL, Dellsperger KC (2001) Endothelium-derived hyperpolarizing factor in coronary microcirculation: responses to arachidonic acid. Am J Physiol 281:H1553–H1560

    CAS  Google Scholar 

  104. Park WS, Han J, Earm YE (2008) Physiological role of inward rectifier K+ channels in vascular smooth muscle cells. Pflügers Arch 457:137–147

    Article  PubMed  CAS  Google Scholar 

  105. Parkington HC, Coleman HA, Tare M (2004) Prostacyclin and endothelium-dependent hyperpolarization. Pharmacol Res 49:509–514

    Article  PubMed  CAS  Google Scholar 

  106. Parkington HC, Tonta MA, Coleman HA, Tare M (1995) Role of membrane potential in endothelium-dependent relaxation of guinea-pig coronary arterial smooth muscle. J Physiol 484:469–480

    PubMed  CAS  Google Scholar 

  107. Pomposiello S, Rhaleb NE, Alva M, Carretero OA (1999) Reactive oxygen species: role in the relaxation induced by bradykinin or arachidonic acid via EDHF in isolated porcine coronary arteries. J Cardiovasc Pharmacol 34:567–574

    Article  PubMed  CAS  Google Scholar 

  108. Quignard JF, Félétou M, Edwards G, Duhault J, Weston AH, Vanhoutte PM (2000) Role of endothelial cell hyperpolarization in EDHF-mediated responses in the guinea-pig carotid artery. Br J Pharmacol 129:1103–1112

    Article  PubMed  CAS  Google Scholar 

  109. Rees DD, Palmer RM, Hodson HF, Moncada S (1989) A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol 96:418–424

    PubMed  CAS  Google Scholar 

  110. Revtyak GE, Hughes MJ, Johnson AR, Campbell WB (1988) Histamine stimulation of prostaglandin and HETE synthesis in human endothelial cells. Am J Physiol 255:C214–C225

    PubMed  CAS  Google Scholar 

  111. Rhodin JA (1967) The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 18:181–223

    Article  PubMed  CAS  Google Scholar 

  112. Richards GR, Weston AH, Burnham MP, Félétou M, Vanhoutte PM, Edwards G (2001) Suppression of K+-induced hyperpolarization by phenylephrine in rat mesenteric artery: relevance to studies of endothelium-derived hyperpolarizing factor. Br J Pharmacol 134:1–5

    Article  PubMed  CAS  Google Scholar 

  113. Rosolowsky M, Falck JR, Willerson JT, Campbell WB (1990) Synthesis of lipoxygenase and epoxygenase products of arachidonic acid by normal and stenosed canine coronary arteries. Circ Res 66:608–621

    PubMed  CAS  Google Scholar 

  114. Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, Rodella LF, Vriens J, Nilius B, Feron O, Balligand JL, Dessy C (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074

    Article  PubMed  CAS  Google Scholar 

  115. Sandow S, Neylon C, Chen M, Garland C (2006) Spatial separation of endothelial small- and intermediate-conductance calcium-activated potassium channels (KCa) and connexins: possible relationship to vasodilator function? J Anat 209:689–698

    Article  PubMed  CAS  Google Scholar 

  116. Sandow SL, Hill CE (2000) Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 86:341–346

    PubMed  CAS  Google Scholar 

  117. Schubert R, Serebryakov VN, Mewes H, Hopp HH (1997) Iloprost dilates rat small arteries: role of KATP- and KCa-channel activation by cAMP-dependent protein kinase. Am J Physiol 272:H1147–H1156

    PubMed  CAS  Google Scholar 

  118. Shimokawa H (2010) Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pflügers Arch (In press)

  119. Simon A, Harrington EO, Liu GX, Koren G, Choudhary G (2008) Mechanism of C-type natriuretic peptide-induced endothelial cell hyperpolarization. Am J Physiol 296:L248–L256

    Google Scholar 

  120. Sobey CG, Heistad DD, Faraci FM (1997) Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke 28:2290–2294

    PubMed  CAS  Google Scholar 

  121. Suga S, Itoh H, Komatsu Y, Ogawa Y, Hama N, Yoshimasa T, Nakao K (1993) Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells–evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology 133:3038–3041

    Article  PubMed  CAS  Google Scholar 

  122. Tare M, Coleman HA, Parkington HC (2002) Glycyrrhetinic derivatives inhibit hyperpolarization in endothelial cells of guinea pig and rat arteries. Am J Physiol 282:H335–H341

    CAS  Google Scholar 

  123. Tare M, Parkington HC, Coleman HA, Neild TO, Dusting GJ (1990) Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature 346:69–71

    Article  PubMed  CAS  Google Scholar 

  124. Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT (2003) Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 93:124–131

    Article  PubMed  CAS  Google Scholar 

  125. Taylor SG, Weston AH (1988) Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol Sci 9:272–274

    Article  PubMed  CAS  Google Scholar 

  126. Vazquez J, Feigenbaum P, King VF, Kaczorowski GJ, Garcia ML (1990) Characterization of high affinity binding sites for charybdotoxin in synaptic plasma membranes from rat brain. Evidence for a direct association with an inactivating, voltage-dependent, potassium channel. J Biol Chem 265:15564–15571

    PubMed  CAS  Google Scholar 

  127. Villar IC, Panayiotou CM, Sheraz A, Madhani M, Scotland RS, Nobles M, Kemp-Harper B, Ahluwalia A, Hobbs AJ (2007) Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res 74:515–525

    Article  PubMed  CAS  Google Scholar 

  128. Waldron GJ, Garland CJ (1994) Effect of potassium channel blockers on L-NAME insensitive relaxations in rat small mesenteric artery. Can J Physiol Pharmacol 72(suppl 1):11

    Google Scholar 

  129. Wang R (1998) Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol 76:1–15

    Article  PubMed  Google Scholar 

  130. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  PubMed  CAS  Google Scholar 

  131. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    Article  PubMed  CAS  Google Scholar 

  132. Weintraub NL, Fang X, Kaduce TL, VanRollins M, Chatterjee P, Spector AA (1997) Potentiation of endothelium-dependent relaxation by epoxyeicosatrienoic acids. Circ Res 81:258–267

    PubMed  CAS  Google Scholar 

  133. Weston AH, Taylor SG, Southerton JS, Bray KM, Newgreen DT, McHarg AD (1988) Potassium channel-opening drugs in smooth muscle. In: Bevan JA, Majewski H, Maxwell RA, Story DF (eds) Vascular neuroeffector mechanisms: receptors, ion channels, second messengers and endogenous mediators. IRL Press, Oxford, pp 193–200

    Google Scholar 

  134. Weston AH, Porter EL, Harno E, Edwards G (2010) Impairment of endothelial SKCa channels and of downstream hyperpolarising pathways in mesenteric arteries from spontaneously-hypertensive rats. Br J Pharmacol. doi:10.1111/j.1476-5381.2010.00657.x

  135. Weston AH, Absi M, Harno E, Geraghty AR, Ward DT, Ruat M, Dodd RH, Dauban P, Edwards G (2008) The expression and function of Ca2+-sensing receptors in rat mesenteric artery; comparative studies using a model of type II diabetes. Br J Pharmacol 154:652–662

    Article  PubMed  CAS  Google Scholar 

  136. Weston AH, Absi M, Ward DT, Ohanian J, Dodd RH, Dauban P, Petrel C, Ruat M, Edwards G (2005) Evidence in favor of a calcium-sensing receptor in arterial endothelial cells: studies with calindol and Calhex 231. Circ Res 97:391–398

    Article  PubMed  CAS  Google Scholar 

  137. Weston AH, Félétou M, Vanhoutte PM, Falck JR, Campbell WB, Edwards G (2005) Bradykinin-induced, endothelium-dependent responses in porcine coronary arteries: involvement of potassium channel activation and epoxyeicosatrienoic acids. Br J Pharmacol 145:775–784

    Article  PubMed  CAS  Google Scholar 

  138. Weston AH, Richards GR, Burnham MP, Félétou M, Vanhoutte PM, Edwards G (2002) K+-induced hyperpolarization in rat mesenteric artery: identification, localization and role of Na+/K+-ATPases. Br J Pharmacol 136:918–926

    Article  PubMed  CAS  Google Scholar 

  139. White RE, Kryman JP, El-Mowafy AM, Han G, Carrier GO (2000) cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BKCa channel activity in coronary artery smooth muscle cells. Circ Res 86:897–905

    PubMed  CAS  Google Scholar 

  140. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA 97:8151–8156

    Article  PubMed  CAS  Google Scholar 

  141. Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507

    Article  PubMed  CAS  Google Scholar 

  142. Yao X, Garland CJ (2005) Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97:853–863

    Article  PubMed  CAS  Google Scholar 

  143. Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL (2000) Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circ Res 87:160–166

    PubMed  CAS  Google Scholar 

  144. Zeller A, Wenzl MV, Beretta M, Stessel H, Russwurm M, Koesling D, Schmidt K, Mayer B (2009) Mechanisms underlying activation of soluble guanylate cyclase by the nitroxyl donor Angeli’s salt. Mol Pharmacol 76:1115–1122

    Article  PubMed  CAS  Google Scholar 

  145. Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge Z-D, Li R, Warltier DC, Suzuki M, Gutterman DD (2009) Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53:532–538

    Article  PubMed  CAS  Google Scholar 

  146. Zygmunt PM, Högestätt ED (1996) Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Br J Pharmacol 117:1600–1606

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

GE and AHW acknowledge the generous support of the British Heart Foundation in their studies over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur H. Weston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, G., Félétou, M. & Weston, A.H. Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch - Eur J Physiol 459, 863–879 (2010). https://doi.org/10.1007/s00424-010-0817-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0817-1

Keywords

Navigation