Skip to main content
Log in

Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Renal phosphate reabsorption across the brush border membrane (BBM) in the proximal tubule is mediated by at least three transporters, NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3), and Pit-2 (SLC20A2). Parathyroid hormone (PTH) is a potent phosphaturic factor exerting an acute and chronic reduction in proximal tubule phosphate reabsorption. PTH acutely induces NaPi-IIa internalization from the BBM and lysosomal degradation, but its effects on NaPi-IIc and Pit-2 are unknown. In rats adapted to low phosphate diet, acute (30 and 60 min) application of PTH decreased BBM phosphate transport rates both in the absence and the presence of phosphonoformic acid, an inhibitor of SLC34 but not SLC20 transporters. Immunohistochemistry showed NaPi-IIa expression in the S1 to the S3 segment of superficial and juxtamedullary nephrons; NaPi-IIc was only detectable in S1 segments and Pit-2 in S1 and weakly in S2 segments of superficial and juxtamedullary nephrons. PTH reduced NaPi-IIa staining in the BBM with increased intracellular and lysosomal appearance. NaPi-IIa internalization was most prominent in S1 segments of superficial nephrons. We did not detect changes in NaPi-IIc and Pit-2 staining over this time period. Blockade of lysosomal protein degradation with leupeptin revealed NaPi-IIa accumulation in lysosomes, but no lysosomal staining for NaPi-IIc or Pit-2 could be detected. Immunoblotting of BBM confirmed the reduction in NaPi-IIa abundance and the absence of any effect on NaPi-IIc expression. Pit-2 protein abundance was also significantly reduced by PTH. Thus, function and expression of BBM phosphate cotransporters are differentially regulated allowing for fine-tuning of renal phosphate reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bacic D, Capuano P, Baum M, Zhang J, Stange G, Biber J, Kaissling B, Moe OW, Wagner CA, Murer H (2005) Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells. Am J Physiol Renal Physiol 288:F740–F747

    Article  CAS  PubMed  Google Scholar 

  2. Bacic D, Capuano P, Gisler SM, Pribanic S, Christensen EI, Biber J, Loffing J, Kaissling B, Wagner CA, Murer H (2003) Impaired PTH-induced endocytotic down-regulation of the renal type IIa Na+/Pi-cotransporter in RAP deficient mice with reduced megalin expression. Pflügers Arch 446:475–484

    Article  CAS  PubMed  Google Scholar 

  3. Bacic D, Lehir M, Biber J, Kaissling B, Murer H, Wagner CA (2006) The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int 69:495–503

    Article  CAS  PubMed  Google Scholar 

  4. Bacic D, Schulz N, Biber J, Kaissling B, Murer H, Wagner CA (2003) Involvement of the MAPK-kinase pathway in the PTH mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney. Pflügers Arch 446:52–60

    Article  CAS  PubMed  Google Scholar 

  5. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaP(i)-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192

    Article  CAS  PubMed  Google Scholar 

  6. Berndt TJ, Bielesz B, Craig TA, Tebben PJ, Bacic D, Wagner CA, O’Brien S, Schiavi S, Biber J, Murer H, Kumar R (2006) Secreted frizzled-related protein-4 reduces sodium-phosphate co-transporter abundance and activity in proximal tubule cells. Pflugers Arch 451:579–587

    Article  CAS  PubMed  Google Scholar 

  7. Biber J, Hernando N, Forster I, Murer H (2009) Regulation of phosphate transport in proximal tubules. Pflugers Arch 458:39–52

    Article  CAS  PubMed  Google Scholar 

  8. Biber J, Stieger B, Stange G, Murer H (2007) Isolation of renal proximal tubular brush-border membranes. Nat Protoc 2:1356–1359

    Article  CAS  PubMed  Google Scholar 

  9. Biber J, Stieger B, Haase W, Murer H (1981) A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim Biophys Acta 647:169–176

    Article  CAS  PubMed  Google Scholar 

  10. Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW, Wilson P, Miyazaki-Anzai S, Sutherland E, Caldas Y, Blaine JT, Segawa H, Miyamoto K, Barry NP, Levi M (2009) Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol 297:F350–F361

    Article  CAS  PubMed  Google Scholar 

  11. Busch AE, Wagner CA, Schuster A, Waldegger S, Biber J, Murer H, Lang F (1995) Properties of electrogenic Pi transport by a human renal brush border Na+/Pi transporter. J Am Soc Nephrol 6:1547–1551

    CAS  PubMed  Google Scholar 

  12. Capuano P, Bacic D, Roos M, Gisler SM, Stange G, Biber J, Kaissling B, Weinman EJ, Shenolikar S, Wagner CA, Murer H (2007) Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+/phosphate cotransporter NaPi-IIa in NHERF1 deficient mice. Am J Physiol Cell Physiol 292:C927–C934

    Article  CAS  PubMed  Google Scholar 

  13. Custer M, Lötscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na-Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol 266:F767–F774

    CAS  PubMed  Google Scholar 

  14. Deliot N, Hernando N, Horst-Liu Z, Capuano P, Bacic D, Wagner CA, O’Brien S, Biber J, Murer H (2005) PTH treatment induces dissociation of NaPi-IIa/NHERF1 complexes. Am J Physiol Cell Physiol 289:C159–C167

    Article  CAS  PubMed  Google Scholar 

  15. Friedlaender MM, Wald H, Dranitzky-Elhalel M, Levi M, Popovtzer MM (2004) Recovery of renal tubule phosphate reabsorption despite reduced levels of sodium-phosphate transporter. Eur J Endocrinol 151:797–801

    Article  CAS  PubMed  Google Scholar 

  16. Gisler SM, Stagljar I, Traebert M, Bacic D, Biber J, Murer H (2001) Interaction of the type IIa Na/Pi cotransporter with PDZ proteins. J Biol Chem 276:9206–9213

    Article  CAS  PubMed  Google Scholar 

  17. Gloor HJ, Bonjour JP, Caverzasio J, Fleisch H (1979) Resistance to the phosphaturic and calcemic actions of parathyroid hormone during phosphate depletion. Prevention by 1,25-dihydroxyvitamin D3. J Clin Invest 63:371–377

    Article  CAS  PubMed  Google Scholar 

  18. Hernando N, Deliot N, Gisler SM, Lederer E, Weinman EJ, Biber J, Murer H (2002) PDZ-domain interactions and apical expression of type IIa Na/P(i) cotransporters. Proc Natl Acad Sci USA 99:11957–11962

    Article  CAS  PubMed  Google Scholar 

  19. Kaminsky NI, Broadus AE, Hardman JG, Jones DJ Jr, Ball JH, Sutherland EW, Liddle GW (1970) Effects of parathyroid hormone on plasma and urinary adenosine 3′,5′-monophosphate in man. J Clin Invest 49:2387–2395

    Article  CAS  PubMed  Google Scholar 

  20. Karim-Jimenez Z, Hernando N, Biber J, Murer H (2000) A dibasic motif involved in parathyroid hormone-induced down-regulation of the type IIa NaPi cotransporter. Proc Natl Acad Sci USA 97:12896–12901

    Article  CAS  PubMed  Google Scholar 

  21. Kempson SA, Lotscher M, Kaissling B, Biber J, Murer H, Levi M (1995) Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Physiol 268:F784–F791

    CAS  PubMed  Google Scholar 

  22. Keusch I, Traebert M, Lötscher M, Kaissling B, Murer H, Biber J (1998) Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II. Kidney Int 54:1224–1232

    Article  CAS  PubMed  Google Scholar 

  23. Lapointe J-Y, Tessier J, Paquette Y, Wallendorff B, Coady M, Pichette V, Bonnardeaux A (2006) NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak. Kidney International 69:2261–2267

    Article  CAS  PubMed  Google Scholar 

  24. Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Juppner H, Jonsson KB (2004) Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145:3087–3094

    Article  CAS  PubMed  Google Scholar 

  25. Lederer ED, Khundmiri SJ, Weinman EJ (2003) Role of NHERF-1 in regulation of the activity of Na-K ATPase and sodium-phosphate co-transport in epithelial cells. J Am Soc Nephrol 14:1711–1719

    Article  CAS  PubMed  Google Scholar 

  26. Lederer ED, Sohi SS, Mathiesen JM, Klein JB (1998) Regulation of expression of type II sodium-phosphate cotransporters by protein kinases A and C. Am J Physiol 275:F270–F277

    CAS  PubMed  Google Scholar 

  27. Levi M, Lötscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber J (1994) Cellular mechanisms of acute and chronic adaptation of rat renal Pi transporter to alterations in dietary Pi. Am J Physiol 267:F900–F908

    CAS  PubMed  Google Scholar 

  28. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (2006) Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78:193–201

    Article  CAS  PubMed  Google Scholar 

  29. Lötscher M, Scarpetta Y, Levi M, Halaihel N, Wang H, Zajicek HK, Biber J, Murer H, Kaissling B (1999) Rapid downregulation of rat renal Na/Pi cotransporter in response to parathyroid hormone involves microtubule rearrangement. J Clin Invest 104:483–494

    Article  PubMed  Google Scholar 

  30. Muff R, Fischer JA, Biber J, Murer H (1992) Parathyroid hormone receptors in control of proximal tubule function. Annu Rev Physiol 54:67–79

    Article  CAS  PubMed  Google Scholar 

  31. Murer H, Forster I, Biber J (2004) The sodium phosphate cotransporter family SLC34. Pflugers Arch 447:763–767

    Article  CAS  PubMed  Google Scholar 

  32. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    CAS  PubMed  Google Scholar 

  33. Nowik M, Picard N, Stange G, Capuano P, Tenenhouse HS, Biber J, Murer H, Wagner CA (2008) Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch 457:539–549

    Article  CAS  PubMed  Google Scholar 

  34. Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K (2003) Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch 446:106–115

    CAS  PubMed  Google Scholar 

  35. Pfister MF, Ruf I, Stange G, Ziegler U, Lederer E, Biber J, Murer H (1998) Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. Proc Natl Acad Sci USA 95:1909–1914

    Article  CAS  PubMed  Google Scholar 

  36. Ravera S, Virkki LV, Murer H, Forster IC (2007) Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Physiol Cell Physiol 293:C606–C620

    Article  CAS  PubMed  Google Scholar 

  37. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672

    Article  CAS  PubMed  Google Scholar 

  38. Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, Taketani Y, Miyamoto K (2007) Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Renal Physiol 292:F395–F403

    Article  CAS  PubMed  Google Scholar 

  39. Szczepanska-Konkel M, Yusufi AN, Dousa TP (1987) Interactions of [14C]phosphonoformic acid with renal cortical brush-border membranes. Relationship to the Na+-phosphate co-transporter. J Biol Chem 262:8000–8010

    CAS  PubMed  Google Scholar 

  40. Szczepanska-Konkel M, Yusufi AN, VanScoy M, Webster SK, Dousa TP (1986) Phosphonocarboxylic acids as specific inhibitors of Na+-dependent transport of phosphate across renal brush border membrane. J Biol Chem 261:6375–6383

    CAS  PubMed  Google Scholar 

  41. Traebert M, Roth J, Biber J, Murer H, Kaissling B (2000) Internalization of proximal tubular type II Na-Pi cotransporter by PTH: immunogold electron microscopy. Am J Physiol Renal Physiol 278:F148–F154

    CAS  PubMed  Google Scholar 

  42. Traebert M, Völkl H, Biber J, Murer H, Kaissling B (2000) Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am J Physiol Renal Physiol 278:F792–F798

    CAS  PubMed  Google Scholar 

  43. Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 296:F691–F699

    Article  CAS  PubMed  Google Scholar 

  44. Villa-Bellosta R, Sorribas V (2008) Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol Appl Pharmacol 232:125–134

    Article  CAS  PubMed  Google Scholar 

  45. Virkki LV, Biber J, Murer H, Forster IC (2007) Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 293:F643–F654

    Article  CAS  PubMed  Google Scholar 

  46. Virkki LV, Forster IC, Hernando N, Biber J, Murer H (2003) Functional characterization of two naturally occurring mutations in the human sodium-phosphate cotransporter type IIa. J Bone Miner Res 18:2135–2141

    Article  CAS  PubMed  Google Scholar 

  47. Webster SK, Haramati A (1985) Developmental changes in the phosphaturic response to parathyroid hormone in the rat. Am J Physiol 249:F251–F255

    CAS  PubMed  Google Scholar 

  48. Weinman EJ, Biswas RS, Peng G, Shen L, Turner CLEX, Steplock D, Shenolikar S, Cunningham R (2007) Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1. J Clin Invest 117:3412–3420

    Article  CAS  PubMed  Google Scholar 

  49. Weinman EJ, Boddeti A, Cunningham R, Akom M, Wang F, Wang Y, Liu J, Steplock D, Shenolikar S, Wade JB (2003) NHERF-1 is required for renal adaptation to a low-phosphate diet. Am J Physiol Renal Physiol 285:F1225–F1232

    CAS  PubMed  Google Scholar 

  50. Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M (2001) Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Kidney Int 60:694–704

    Article  CAS  PubMed  Google Scholar 

  51. Zhao N, Tenenhouse HS (2000) Npt2 gene disruption confers resistance to the inhibitory action of parathyroid hormone on renal sodium-phosphate cotransport. Endocrinology 141:2159–2165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The anti-Pit-2 antibody was kindly provided by Dr. Victor Sorribas, University of Zaragoza, Zaragoza, Spain. This study was supported by grants from the Swiss National Science Foundation (SNF; 31-065397/1) to H. Murer and (3100A0-122217) to C.A. Wagner, and the EU 6th Framework program EuReGene to H. Murer, J. Biber, and C.A. Wagner. We also acknowledge the use of the Zurich Center for Integrative Human Physiology (ZIHP) Core Facility for Rodent Phenotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten A. Wagner.

Additional information

Nicolas Picard and Paola Capuano contributed equally to this manuscript and therefore share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picard, N., Capuano, P., Stange, G. et al. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch - Eur J Physiol 460, 677–687 (2010). https://doi.org/10.1007/s00424-010-0841-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0841-1

Keywords

Navigation