Skip to main content
Log in

ACE2, angiotensin-(1–7), and Mas: the other side of the coin

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The renin–angiotensin system (RAS) has recently been extended by the addition of a novel axis consisting of the angiotensin-converting enzyme 2 (ACE2), the heptapeptide angiotensin (1–7) (Ang-(1–7)), and the G protein-coupled receptor Mas. ACE2 converts the vasoconstrictive and pro-oxidative peptide angiotensin II (Ang II) into Ang-(1–7) which exerts vasodilatory and antioxidative effects via its receptor Mas. Thereby, ACE2 regulates the local actions of the RAS in cardiovascular tissues and the ACE2/Ang-(1–7)/Mas axis exerts protective actions in hypertension, diabetes, and other cardiovascular disorders. Consequently, this novel RAS axis represents a promising therapeutic target for cardiovascular and metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Alenina N, Baranova TV, Smirnov E, Bader M, Lippoldt A, Patkin EL, Walther T (2002) Imprinting of the murine Mas protooncogene is restricted to its antisense RNA. Biochem Biophys Res Commun 290:1072–1078

    Article  PubMed  CAS  Google Scholar 

  2. Ambroz C, Clark AJL, Catt KJ (1991) The mas oncogene enhances angiotensin-induced [Ca2+]i responses in cells with pre-existing angiotensin II receptors. Biochim Biophys Acta 1133:107–111

    Article  PubMed  CAS  Google Scholar 

  3. Barroso LC, Silveira KD, Lima CX, Borges V, Bader M, Rachid M, Santos RA, Simoes e Silva AC, Souza DG, Teixeira MM (2012) Renoprotective effects of AVE0991, a non-peptide Mas receptor agonist, in experimental acute renal injury. Int J Hypertens 2012:808726

    PubMed  Google Scholar 

  4. Benter IF, Yousif MH, Al-Saleh FM, Raghupathy R, Chappell MC, Diz DI (2011) Angiotensin-(1–7) blockade attenuates captopril- or hydralazine-induced cardiovascular protection in spontaneously hypertensive rats treated with NG-nitro-l-arginine methyl ester. J Cardiovasc Pharmacol 57:559–567

    Article  PubMed  CAS  Google Scholar 

  5. Benter IF, Yousif MH, Dhaunsi GS, Kaur J, Chappell MC, Diz DI (2008) Angiotensin-(1–7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol 28:25–33

    Article  PubMed  CAS  Google Scholar 

  6. Bindom SM, Hans CP, Xia H, Boulares AH, Lazartigues E (2010) Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 59:2540–2548

    Article  PubMed  CAS  Google Scholar 

  7. Burns KD (2007) The emerging role of angiotensin-converting enzyme-2 in the kidney. Curr Opin Nephrol Hypertens 16:116–121

    Article  PubMed  CAS  Google Scholar 

  8. Burrell LM, Risvanis J, Kubota E, Dean RG, MacDonald PS, Lu S, Tikellis C, Grant SL, Lew RA, Smith AI, Cooper ME, Johnston CI (2005) Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 26:369–375

    Article  PubMed  CAS  Google Scholar 

  9. Castro CH, Souza Dos Santos RA, Ferreira AJ, Bader M, Alenina N, de Almeida AP (2005) Evidence for a functional interaction of the angiotensin-(1–7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Hypertension 46:942

    Article  Google Scholar 

  10. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822–828

    Article  PubMed  CAS  Google Scholar 

  11. da Silveira KD, Pompermayer Bosco KS, Diniz LR, Carmona AK, Cassali GD, Bruna-Romero O, de Sousa LP, Teixeira MM, Santos RA, Simoes e Silva AC, Ribeiro Vieira MA (2010) ACE2-angiotensin-(1-7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin Sci (Lond) 119:385–394

    Article  Google Scholar 

  12. de Moura MM, Dos Santos RA, Campagnole-Santos MJ, Todiras M, Bader M, Alenina N, Haibara AS (2010) Altered cardiovascular reflexes responses in conscious Angiotensin-(1-7) receptor Mas-knockout mice. Peptides 31:1934–1939

    Article  PubMed  Google Scholar 

  13. Der SS, Grobe JL, Yuan L, Narielwala DR, Walter GA, Katovich MJ, Raizada MK (2008) Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension 51:712–718

    Article  Google Scholar 

  14. Dias-Peixoto MF, Santos RA, Gomes ERM, Alves MNM, Almeida PWM, Greco L, Rosa M, Fauler B, Bader M, Alenina N, Guatimosim S (2008) Molecular mechanisms involved in angiotensin-(1-7)/Mas signaling pathway in cardiomyocytes. Hypertension 52:542–548

    Article  PubMed  CAS  Google Scholar 

  15. Diez-Freire C, Vazquez J, Correa de Adjounian MF, Ferrari MF, Yuan L, Silver X, Torres R, Raizada MK (2006) ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol Genomics 27:12–19

    Article  PubMed  CAS  Google Scholar 

  16. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9

    Article  PubMed  CAS  Google Scholar 

  17. Durik M, Veghel R Van, Kuipers A, Rink R, Haas Jimoh AM, Moll G, Danser AH, Roks AJ (2012) The effect of the thioether-bridged, stabilized Angiotensin-(1-7) analogue cyclic ang-(1-7) on cardiac remodeling and endothelial function in rats with myocardial infarction. Int J Hypertens 2012:536426

    PubMed  Google Scholar 

  18. Elased KM, Cunha TS, Marcondes FK, Morris M (2008) Brain angiotensin-converting enzymes: role of angiotensin-converting enzyme 2 in processing angiotensin II in mice. Exp Physiol 93:665–675

    Article  PubMed  CAS  Google Scholar 

  19. Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, Mezzano S, Egido J, Schultheiss HP, Ruiz-Ortega M, Walther T (2009) Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS One 4:e5406

    Article  PubMed  Google Scholar 

  20. Feng Y, Xia H, Cai Y, Halabi CM, Becker LK, Santos RA, Speth RC, Sigmund CD, Lazartigues E (2010) Brain-selective overexpression of human Angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res 106:373–382

    Article  PubMed  CAS  Google Scholar 

  21. Feng Y, Yue X, Xia H, Bindom SM, Hickman PJ, Filipeanu CM, Wu G, Lazartigues E (2008) Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation. Circ Res 102:729–736

    Article  PubMed  CAS  Google Scholar 

  22. Ferrario CM, Varagic J (2010) The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Physiol Renal Physiol 298:F1297–F1305

    Article  PubMed  CAS  Google Scholar 

  23. Ferreira AJ, Bader M, Santos RA (2012) Therapeutic targeting of the angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas cascade in the renin–angiotensin system: a patent review. Expert Opin Ther Pat 22(5):567–574

    Article  PubMed  CAS  Google Scholar 

  24. Ferreira AJ, Castro CH, Guatimosim S, Almeida PW, Gomes ER, Dias-Peixoto MF, Alves MN, Fagundes-Moura CR, Rentzsch B, Gava E, Almeida AP, Guimaraes AM, Kitten GT, Reudelhuber T, Bader M, Santos RA (2010) Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1-7)-producing fusion protein in the heart. Ther Adv Cardiovasc Dis 4:83–96

    Article  PubMed  CAS  Google Scholar 

  25. Ferreira AJ, Santos RA (2005) Cardiovascular actions of angiotensin-(1-7). Braz J Med Biol Res 38:499–507

    Article  PubMed  CAS  Google Scholar 

  26. Ferreira AJ, Shenoy V, Qi Y, Fraga-Silva RA, Santos RA, Katovich MJ, Raizada MK (2011) Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol 96:287–294

    Article  PubMed  CAS  Google Scholar 

  27. Fraga da Silva RA, Pinheiro SVB, Goncalves ACC, Alenina N, Bader M, Santos RA (2008) The NO-mediated antithrombotic effect of angiotensin-(1-7) is abolished in mas-knockout mice. Mol Med 14:28–35

    Google Scholar 

  28. Fraga-Silva RA, Costa-Fraga FP, Sousa FB, Alenina N, Bader M, Sinisterra RD, Santos RA (2011) An orally-active formulation of angiotensin-(1-7) produces antithrombotic effect. Clinics 66:837–841

    Article  PubMed  Google Scholar 

  29. Gallagher PE, Cook K, Soto-Pantoja D, Menon J, Tallant EA (2011) Angiotensin peptides and lung cancer. Curr Cancer Drug Targets 11:394–404

    Article  PubMed  CAS  Google Scholar 

  30. Garcia NH, Garvin JL (1994) Angiotensin 1-7 has a biphasic effect on fluid absorption in the proximal straight tubule. J Am Soc Nephrol 5:1133–1138

    PubMed  CAS  Google Scholar 

  31. Gava E, de Castro CH, Ferreira AJ, Colleta H, Melo MB, Alenina N, Bader M, Oliveira LA, Kitten GT, Santos RA (2012) Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart. Regul Pept 175:30–42

    Article  PubMed  CAS  Google Scholar 

  32. Giani JF, Gironacci MM, Munoz MC, Pena C, Turyn D, Dominici FP (2007) Angiotensin-(1 7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors. Am J Physiol Heart Circ Physiol 293:H1154–H1163

    Article  PubMed  CAS  Google Scholar 

  33. Giani JF, Mayer MA, Munoz MC, Silberman EA, Hocht C, Taira CA, Gironacci MM, Turyn D, Dominici FP (2009) Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endocrinol Metab 296:E262–E271

    Article  PubMed  CAS  Google Scholar 

  34. Gomes ERM, Lara AL, Almeida WM, Guimaraes D, Resende ER, Campagnole-Santos MJ, Bader M, Santos RA, Guatimosim S (2009) Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a NO/cGMP dependent pathway. Hypertension 55:153–160

    Article  PubMed  Google Scholar 

  35. Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ (2007) Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). Am J Physiol Heart Circ Physiol 292:H736–H742

    Article  PubMed  CAS  Google Scholar 

  36. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631–637

    Article  PubMed  CAS  Google Scholar 

  37. Huentelman MJ, Grobe JL, Vazquez J, Stewart JM, Mecca AP, Katovich MJ, Ferrario CM, Raizada MK (2005) Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp Physiol 90:783–790

    Article  PubMed  CAS  Google Scholar 

  38. Imai Y, Kuba K, Penninger JM (2008) The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 93:543–548

    Article  PubMed  CAS  Google Scholar 

  39. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112–116

    Article  PubMed  CAS  Google Scholar 

  40. Iwata M, Cowling RT, Gurantz D, Moore C, Zhang S, Yuan JX, Greenberg BH (2005) Angiotensin-(1-7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol 289:H2356–H2363

    Article  PubMed  CAS  Google Scholar 

  41. Jackson TR, Blair AC, Marshall J, Goedert M, Hanley MR (1988) The mas oncogene encodes an angiotensin receptor. Nature 335:437–440

    Article  PubMed  CAS  Google Scholar 

  42. Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton PM, Gembardt F, Kellett E, Martini L, Vanderheyden P, Schultheiss HP, Walther T (2005) G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 111:1806–1813

    Article  PubMed  CAS  Google Scholar 

  43. Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM (2010) Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther 128:119–128

    Article  PubMed  CAS  Google Scholar 

  44. Kucharewicz I, Pawlak R, Matys T, Pawlak D, Buczko W (2002) Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1-7). Hypertension 40:774–779

    Article  PubMed  CAS  Google Scholar 

  45. Langeveld B, Van Gilst WH, Tio RA, Zijlstra F, Roks AJ (2005) Angiotensin-(1-7) attenuates neointimal formation after stent implantation in the rat. Hypertension 45:138–141

    PubMed  CAS  Google Scholar 

  46. Lara LS, Cavalcante F, Axelband F, De Souza AM, Lopes AG, Caruso-Neves C (2006) Involvement of the Gi/o/cGMP/PKG pathway in the AT2-mediated inhibition of outer cortex proximal tubule Na+-ATPase by Ang-(1–7). Biochem J 395:183–190

    Article  CAS  Google Scholar 

  47. Lavrentyev EN, Malik KU (2009) High glucose-induced Nox1-derived superoxides downregulate PKC-betaII, which subsequently decreases ACE2 expression and ANG(1-7) formation in rat VSMCs. Am J Physiol Heart Circ Physiol 296:H106–H118

    Article  PubMed  CAS  Google Scholar 

  48. Lazaroni TL, Raslan AC, Fontes WR, de Oliveira ML, Bader M, Alenina N, Moraes MF, Dos Santos RA, Pereira GS (2012) Angiotensin-(1-7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol Learn Mem 97:113–123

    Article  PubMed  CAS  Google Scholar 

  49. Li P, Chappell MC, Ferrario CM, Brosnihan KB (1997) Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 29:394–400

    Article  PubMed  CAS  Google Scholar 

  50. Loot AE, Roks AJ, Henning RH, Tio RA, Suurmeijer AJ, Boomsma F, Van Gilst WH (2002) Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105:1548–1550

    Article  PubMed  CAS  Google Scholar 

  51. Lovren F, Pan Y, Quan A, Teoh H, Wang G, Shukla PC, Levitt KS, Oudit GY, Al-Omran M, Stewart DJ, Slutsky AS, Peterson MD, Backx PH, Penninger JM, Verma S (2008) Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol 295:H1377–H1384

    Article  PubMed  CAS  Google Scholar 

  52. Lula I, Denadai AL, Resende JM, de Sousa FB, de Lima GF, Pilo-Veloso D, Heine T, Duarte HA, Santos RA, Sinisterra RD (2007) Study of angiotensin-(1-7) vasoactive peptide and its beta-cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies. Peptides 28:2199–2210

    Article  PubMed  CAS  Google Scholar 

  53. Lyle R, Watanabe D, te Vruchte D, Lerchner W, Smrzka OW, Wutz A, Schageman J, Hahner L, Davies C, Barlow DP (2000) The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25:19–21

    Article  PubMed  CAS  Google Scholar 

  54. Marques FD, Ferreira AJ, Sinisterra RD, Jacoby BA, Sousa FB, Caliari MV, Silva GA, Melo MB, Nadu AP, Souza LE, Irigoyen MC, Almeida AP, Santos RA (2011) An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension 57:477–483

    Article  PubMed  CAS  Google Scholar 

  55. Mercure C, Yogi A, Callera GE, Aranha AB, Bader M, Ferreira AJ, Santos RA, Walther T, Thouyz RM, Reudelhuber TL (2008) Angiotensin 1-7 blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ Res 103:1319–1326

    Article  PubMed  CAS  Google Scholar 

  56. Metzger R, Bader M, Ludwig T, Berberich C, Bunnemann B, Ganten D (1995) Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. FEBS Lett 357:27–32

    Article  PubMed  CAS  Google Scholar 

  57. Moon JY, Tanimoto M, Gohda T, Hagiwara S, Yamazaki T, Ohara I, Murakoshi M, Aoki T, Ishikawa Y, Lee SH, Jeong KH, Lee TW, Ihm CG, Lim SJ, Tomino Y (2011) Attenuating effect of angiotensin-(1-7) on angiotensin II-mediated NAD(P)H oxidase activation in type 2 diabetic nephropathy of KK-A(y)/Ta mice. Am J Physiol Renal Physiol 300:F1271–F1282

    Article  PubMed  CAS  Google Scholar 

  58. Patel VB, Bodiga S, Basu R, Das SK, Wang W, Wang Z, Lo J, Grant MB, Zhong J, Kassiri Z, Oudit GY (2012) Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ Res 110:1322–1335

    Article  PubMed  CAS  Google Scholar 

  59. Patel VB, Bodiga S, Fan D, Das SK, Wang Z, Wang W, Basu R, Zhong J, Kassiri Z, Oudit GY (2012) Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensin-converting enzyme 2-null mice. Hypertension 59:1195–1203

    Article  PubMed  CAS  Google Scholar 

  60. Paula RD, Lima CV, Britto RR, Campagnole-Santos MJ, Khosla MC, Santos RA (1999) Potentiation of the hypotensive effect of bradykinin by angiotensin-(1-7)-related peptides. Peptides 20:493–500

    Article  PubMed  CAS  Google Scholar 

  61. Pinheiro SVB, Ferreira AJ, Kitten GT, da Silveira KD, da Silva DA, Santos SHS, Gava E, Castro CH, Magalhaes JA, da Mota RK, Botelho-Santos GA, Bader M, Alenina N, Santos RA, Simoes e Silva AC (2009) Genetic deletion of the angiotensin (1-7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int 75:1184–1193

    Article  PubMed  CAS  Google Scholar 

  62. Rabelo LA, Xu P, Todiras M, Sampaio WO, Buttgereit J, Bader M, Santos RA, Alenina N (2008) Ablation of angiotensin (1-7) receptor Mas in C57Bl/6 mice causes endothelial dysfunction. J Am Soc Hypertens 2:418–424

    Article  PubMed  Google Scholar 

  63. Rakusan D, Burgelova M, Vaneckova I, ourkova Z, Huskova Z, Skaroupkova P, Mrazova I, Opocensky M, Kramer HJ, Netuka I, Maly J, Alenina N, Bader M, Santos RA, Cervenka L (2010) Knockout of angiotensin 1-7 receptor mas worsens the course of two-kidney, one-clip goldblatt hypertension: roles of nitric oxide deficiency and enhanced vascular responsiveness to angiotensin II. Kidney Blood Press Res 33:476–488

    Article  PubMed  CAS  Google Scholar 

  64. Rentzsch B, Todiras M, Iliescu R, Popova E, Campos LA, Oliveira ML, Baltatu OC, Santos RA, Bader M (2008) Transgenic ACE2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52:967–973

    Article  PubMed  CAS  Google Scholar 

  65. Rey-Parra GJ, Vadivel A, Coltan L, Hall A, Eaton F, Schuster M, Loibner H, Penninger JM, Kassiri Z, Oudit GY, Thebaud B (2012) Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury. J Mol Med (Berl) 90(6):637–647

    Article  CAS  Google Scholar 

  66. Sampaio WO, Henrique de Castro C, Santos RA, Schiffrin EL, Touyz RM (2007) Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 50:1093–1098

    Article  PubMed  CAS  Google Scholar 

  67. Sampaio WO, Souza dos Santos RA, Faria-Silva R, Mata Machado LT, Schiffrin EL, Touyz RM (2007) Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49:185–192

    Article  PubMed  CAS  Google Scholar 

  68. Santos SHS, Braga JF, Mario EG, Porto LCJ, Botion LM, Alenina N, Bader M, Santos RA (2010) Improved lipid and glucose metabolism in transgenic rats with increased circulating angiotensin-(1-7). Arterioscler Thromb Vasc Biol 30:953–961

    Article  PubMed  CAS  Google Scholar 

  69. Santos RAS, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, Ferrario CM (1988) Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension 11(Suppl I):I-153–I-157

    CAS  Google Scholar 

  70. Santos RA, Castro CH, Gava E, Pinheiro SVB, Almeida AP, Paula DR, Cruz JS, Ramos AS, Rosa KT, Irigoyen MC, Bader M, Alenina N, Ferreira AJ (2006) Impairment of in vitro and in vivo heart function in angiotensin-(1-7) receptor Mas knockout mice. Hypertension 47:996–1002

    Article  PubMed  CAS  Google Scholar 

  71. Santos SHS, Fernandes LR, Mario EG, Ferreira AVM, Porto LCJ, Alvarez-Leite JI, Botion LM, Bader M, Alenina N, Santos RA (2008) Mas deficiency in FVB/N in mice produces marked changes in lipid and glycemic metabolism. Diabetes 57:340–347

    Article  PubMed  CAS  Google Scholar 

  72. Santos RA, Ferreira AJ, Nadu AP, Braga AN, Almeida AP, Campagnole-Santos MJ, Baltatu O, Iliescu R, Reudelhuber TL, Bader M (2004) Expression of an angiotensin-(1-7)-producing fusion protein produces cardioprotective effects in rats. Physiol Genomics 17:292–299

    Article  PubMed  CAS  Google Scholar 

  73. Santos EL, Reis RI, Silva RG, Shimuta SI, Pecher C, Bascands J-L, Schanstra JP, Oliveira L, Bader M, Paiva AC, Costa-Neto CM, Pesquero JB (2007) Functional rescue of a defective angiotensin II AT1 receptor mutant by the Mas protooncogene. Regul Pept 141:159–167

    Article  PubMed  CAS  Google Scholar 

  74. Santos RA, Simoes e Silva AC, Maric C, Silva DMR, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SVB, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1-7) is an endogenous ligand for the G-protein coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Article  PubMed  CAS  Google Scholar 

  75. Savergnini SQ, Beiman M, Lautner RQ, de Paula-Carvalho V, Allahdadi K, Pessoa DC, Costa-Fraga FP, Fraga-Silva RA, Cojocaru G, Cohen Y, Bader M, de Almeida AP, Rotman G, Santos RA (2010) Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the Mas receptor. Hypertension 56:112–120

    Article  PubMed  CAS  Google Scholar 

  76. Shemesh R, Toporik A, Levine Z, Hecht I, Rotman G, Wool A, Dahary D, Gofer E, Kliger Y, Soffer MA, Rosenberg A, Eshel D, Cohen Y (2008) Discovery and validation of novel peptide agonists for G-protein-coupled receptors. J Biol Chem 283:34643–34649

    Article  PubMed  CAS  Google Scholar 

  77. Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Diez-Freire C, Dooies A, Jun JY, Sriramula S, Mariappan N, Pourang D, Venugopal CS, Francis J, Reudelhuber T, Santos RA, Patel JM, Raizada MK, Katovich MJ (2010) The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 182:1065–1072

    Article  PubMed  CAS  Google Scholar 

  78. Skidgel RA, Erdos EG (1998) Cellular carboxypeptidases. Immunol Rev 161:129–141

    Article  PubMed  CAS  Google Scholar 

  79. Tallant EA, Clark MA (2003) Molecular mechanisms of inhibition of vascular growth by angiotensin-(1-7). Hypertension 42:574–579

    Article  PubMed  CAS  Google Scholar 

  80. Tesanovic S, Vinh A, Gaspari TA, Casley D, Widdop RE (2010) Vasoprotective and atheroprotective effects of angiotensin (1-7) in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 30:1606–1613

    Article  PubMed  CAS  Google Scholar 

  81. Thatcher SE, Gupte M, Hatch N, Cassis LA (2012) Deficiency of ACE2 in bone-marrow-derived cells increases expression of TNF-alpha in adipose stromal cells and augments glucose intolerance in obese C57BL/6 mice. Int J Hypertens 2012:762094

    PubMed  Google Scholar 

  82. Thatcher SE, Zhang X, Howatt DA, Lu H, Gurley SB, Daugherty A, Cassis LA (2011) Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor−/− mice. Arterioscler Thromb Vasc Biol 31:758–765

    Article  PubMed  CAS  Google Scholar 

  83. Thomas MC, Pickering RJ, Tsorotes D, Koitka A, Sheehy K, Bernardi S, Toffoli B, Nguyen-Huu TP, Head GA, Fu Y, Chin-Dusting J, Cooper ME, Tikellis C (2010) Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse. Circ Res 107:888–897

    Article  PubMed  CAS  Google Scholar 

  84. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243

    Article  PubMed  CAS  Google Scholar 

  85. Uhal BD, Li X, Xue A, Gao X, Abdul-Hafez A (2011) Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1-7/Mas axis. Am J Physiol Lung Cell Mol Physiol 301:L269–L274

    Article  PubMed  CAS  Google Scholar 

  86. Velez JC, Ierardi JL, Bland AM, Morinelli TA, Arthur JM, Raymond JR, Janech MG (2012) Enzymatic processing of angiotensin peptides by human glomerular endothelial cells. Am J Physiol Renal Physiol (in press)

  87. Verano-Braga T, Schwammle V, Sylvester M, Passos-Silva DG, Peluso AA, Etelvino GM, Santos RA, Roepstorff P (2012) Time-resolved quantitative phosphoproteomics: new insights into angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res (in press)

  88. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838–14843

    Article  PubMed  CAS  Google Scholar 

  89. Wallingford N, Perroud B, Gao Q, Coppola A, Gyengesi E, Liu ZW, Gao XB, Diament A, Haus KA, Shariat-Madar Z, Mahdi F, Wardlaw SL, Schmaier AH, Warden CH, Diano S (2009) Prolylcarboxypeptidase regulates food intake by inactivating alpha-MSH in rodents. J Clin Invest 119:2291–2303

    PubMed  CAS  Google Scholar 

  90. Walters PE, Gaspari TA, Widdop RE (2005) Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension 45:960–966

    Article  PubMed  CAS  Google Scholar 

  91. Walther T, Balschun D, Voigt JP, Fink H, Zuschratter W, Birchmeier C, Ganten D, Bader M (1998) Sustained long term potentiation and anxiety in mice lacking the Mas protooncogene. J Biol Chem 273:11867–11873

    Article  PubMed  CAS  Google Scholar 

  92. Walther T, Voigt J-P, Fink H, Bader M (2000) Sex specific behavioural alterations in Mas-deficient mice. Behav Brain Res 107:105–109

    Article  PubMed  CAS  Google Scholar 

  93. Welches WR, Brosnihan KB, Ferrario CM (1993) A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11. Life Sci 52:1461–1480

    Article  PubMed  CAS  Google Scholar 

  94. Wong DW, Oudit GY, Reich H, Kassiri Z, Zhou J, Liu QC, Backx PH, Penninger JM, Herzenberg AM, Scholey JW (2007) Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol 171:438–451

    Article  PubMed  CAS  Google Scholar 

  95. Xia H, Lazartigues E (2008) Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem 107:1482–1494

    Article  PubMed  CAS  Google Scholar 

  96. Xu P, Goncalves ACC, Todiras M, Rabelo LA, Sampaio WO, Moura MM, Santos SS, Luft FC, Bader M, Gross V, Alenina N, Santos RA (2008) Endothelial dysfunction and elevated blood pressure in Mas gene-deleted mice. Hypertension 51:574–580

    Article  PubMed  CAS  Google Scholar 

  97. Xu P, Sriramula S, Lazartigues E (2011) ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol 300:R804–R817

    Article  PubMed  CAS  Google Scholar 

  98. Yamazato Y, Ferreira AJ, Hong KH, Sriramula S, Francis J, Yamazato M, Yuan L, Bradford CN, Shenoy V, Oh SP, Katovich MJ, Raizada MK (2009) Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. Hypertension 54:365–371

    Article  PubMed  CAS  Google Scholar 

  99. Zhang T, Li Z, Dang H, Chen R, Liaw C, Tran TA, Boatman PD, Connolly DT, Adams JW (2012) Inhibition of Mas G-protein signaling improves coronary blood flow, reduces myocardial infarct size, and provides long-term cardioprotection. Am J Physiol Heart Circ Physiol 302:H299–H311

    Article  PubMed  CAS  Google Scholar 

  100. Zhang C, Zhao YX, Zhang YH, Zhu L, Deng BP, Zhou ZL, Li SY, Lu XT, Song LL, Lei XM, Tang WB, Wang N, Pan CM, Song HD, Liu CX, Dong B, Zhang Y, Cao Y (2010) Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc Natl Acad Sci USA 107:15886–15891

    Article  PubMed  CAS  Google Scholar 

  101. Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, Penninger JM, Scholey JW, Kassiri Z, Oudit GY (2011) Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension 57:314–322

    Article  PubMed  CAS  Google Scholar 

  102. Zhu L, Carretero OA, Xu J, Wang L, Harding P, Rhaleb NE, Yang JJ, Sumners C, Yang XP (2012) Angiotensin II type 2 receptor-stimulated activation of plasma prekallikrein and bradykinin release: role of SHP-1. Am J Physiol Heart Circ Physiol (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bader.

Additional information

This article is published as part of the special issue on the Renin-Angiotensin System.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, M. ACE2, angiotensin-(1–7), and Mas: the other side of the coin. Pflugers Arch - Eur J Physiol 465, 79–85 (2013). https://doi.org/10.1007/s00424-012-1120-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1120-0

Navigation