Skip to main content
Log in

Molecular physiology of EAAT anion channels

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1–5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abrahamsen B, Schneider N, Erichsen MN, Huynh TH, Fahlke C, Bunch L, Jensen AA (2013) Allosteric modulation of an excitatory amino acid transporter: the subtype-selective inhibitor UCPH-101 exerts sustained inhibition of EAAT1 through an intramonomeric site in the trimerization domain. J Neurosci 33:1068–1087. doi:10.1523/jneurosci.3396-12.2013

    Article  PubMed  CAS  Google Scholar 

  2. Alekov A, Fahlke C (2009) Channel-like slippage modes in the human anion/proton exchanger ClC-4. J Gen Physiol 133:485–496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE (2011) Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest 12:446–453. doi:10.1172/jci44474

    Article  CAS  Google Scholar 

  5. Bergles DE, Tzingounis AV, Jahr CE (2002) Comparison of coupled and uncoupled currents during glutamate uptake by GLT-1 transporters. J Neurosci 22:10153–10162

    PubMed  CAS  Google Scholar 

  6. Borre L, Kanner BI (2004) Arginine-445 controls the coupling between glutamate and cations in the neuronal glutamate transporter EAAC-1. J Biol Chem 279:2513–2519

    Article  PubMed  CAS  Google Scholar 

  7. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–393

    Article  PubMed  CAS  Google Scholar 

  8. Cater RJ, Vandenberg RJ, Ryan RM (2014) The domain interface of the human glutamate transporter EAAT1 mediates chloride permeation. Biophys J 107:621–629. doi:10.1016/j.bpj.2014.05.046

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Christensen HN, Riggs TR (1952) Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J Biol Chem 194:57–68

    PubMed  CAS  Google Scholar 

  10. Crane RK (1977) The gradient hypothesis and other models of carrier-mediated active transport. Rev Physiol Biochem Pharmacol 78:99–159

    PubMed  CAS  Google Scholar 

  11. Crisman TJ, Qu S, Kanner BI, Forrest LR (2009) Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. Proc Natl Acad Sci USA 106:20752–20757

    Article  PubMed Central  PubMed  Google Scholar 

  12. Danbolt NC (2001) Glutamate uptake. Progr Neurobiol 65:1–105

    Article  CAS  Google Scholar 

  13. DeFelice LJ, Goswami T (2007) Transporters as channels. Annu Rev Physiol 69:87–112

    Article  PubMed  CAS  Google Scholar 

  14. Erkens GB, Hanelt I, Goudsmits JM, Slotboom DJ, van Oijen AM (2013) Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502:119–123. doi:10.1038/nature12538

    Article  PubMed  CAS  Google Scholar 

  15. Ewers D, Becher T, Machtens JP, Weyand I, Fahlke C (2013) Induced fit substrate binding to an archeal glutamate transporter homologue. Proc Natl Acad Sci USA 110:12486–12491. doi:10.1073/pnas.1300772110

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  PubMed  CAS  Google Scholar 

  17. Gameiro A, Braams S, Rauen T, Grewer C (2011) The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5. Biophys J 100:2623–2632

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Gendreau S, Voswinkel S, Torres-Salazar D, Lang N, Heidtmann H, Detro-Dassen S, Schmalzing G, Hidalgo P, Fahlke C (2004) A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J Biol Chem 279:39505–39512

    Article  PubMed  CAS  Google Scholar 

  19. Grewer C, Balani P, Weidenfeller C, Bartusel T, Tao Z, Rauen T (2005) Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44:11913–11923

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Grewer C, Watzke N, Wiessner M, Rauen T (2000) Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc Natl Acad Sci USA 97:9706–9711

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Hänelt I, Jensen S, Wunnicke D, Slotboom DJ (2015) Low affinity and slow Na+-binding precedes high affinity aspartate binding in GltPh. J Biol Chem. doi:10.1074/jbc.M115.656876

  22. Heinzelmann G, Bastug T, Kuyucak S (2011) Free energy simulations of ligand binding to the aspartate transporter GltPh. Biophys J 101:2380–2388. doi:10.1016/j.bpj.2011.10.010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Heinzelmann G, Bastug T, Kuyucak S (2013) Mechanism and energetics of ligand release in the aspartate transporter GltPh. J Phys Chem B 117:5486–5496. doi:10.1021/jp4010423

    Article  PubMed  CAS  Google Scholar 

  24. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  25. Hotzy J, Machtens JP, Fahlke C (2012) Neutralizing aspartate 83 modifies substrate translocation of excitatory amino acid transporter 3 (EAAT3) glutamate transporters. J Biol Chem 287:20016–20026

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Huang S, Vandenberg RJ (2007) Mutations in transmembrane domains 5 and 7 of the human excitatory amino acid transporter 1 affect the substrate-activated anion channel. Biochemistry 46:9685–9692

    Article  PubMed  CAS  Google Scholar 

  27. Huang Z, Tajkhorshid E (2008) Dynamics of the extracellular gate and ion-substrate coupling in the glutamate transporter. Biophys J 95:2292–2300

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Jensen AA, Fahlke C, Bjorn-Yoshimoto WE, Bunch L (2015) Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol 20:116–123. doi:10.1016/j.coph.2014.10.008

    Article  PubMed  CAS  Google Scholar 

  29. Jensen S, Guskov A, Rempel S, Hanelt I, Slotboom DJ (2013) Crystal structure of a substrate-free aspartate transporter. Nat Struct Mol Biol 20(10):1224–1226. doi:10.1038/nsmb.2663

    Article  PubMed  CAS  Google Scholar 

  30. Kaback HR, Jung K, Jung H, Wu J, Prive GG, Zen K (1993) What’s new with lactose permease. J Bioenerg Biomembr 25:627–636

    PubMed  CAS  Google Scholar 

  31. Koch HP, Brown RL, Larsson HP (2007) The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits. J Neurosci 27:2943–2947

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Kovermann P, Machtens JP, Ewers D, Fahlke C (2010) A conserved aspartate determines pore properties of anion channels associated with excitatory amino acid transporter 4 (EAAT4). J Biol Chem 285:23676–23686

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Larsson HP, Picaud SA, Werblin FS, Lecar H (1996) Noise analysis of the glutamate-activated current in photoreceptors. Biophys J 70:733–742

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Leary GP, Stone EF, Holley DC, Kavanaugh MP (2007) The glutamate and chloride permeation pathways are colocalized in individual neuronal glutamate transporter subunits. J Neurosci 27:2938–2942

    Article  PubMed  CAS  Google Scholar 

  35. Leinenweber A, Machtens JP, Begemann B, Fahlke C (2011) Regulation of glial glutamate transporters by C-terminal domains. J Biol Chem 286:1927–1937

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Lester HA, Cao Y, Mager S (1996) Listening to neurotransmitter transporters. Neuron 17:807–810

    Article  PubMed  CAS  Google Scholar 

  37. Li J, Shaikh SA, Enkavi G, Wen PC, Huang Z, Tajkhorshid E (2013) Transient formation of water-conducting states in membrane transporters. Proc Natl Acad Sci USA 110:7696–7701. doi:10.1073/pnas.1218986110

    Article  PubMed Central  PubMed  Google Scholar 

  38. MacAulay N, Gether U, Klaerke DA, Zeuthen T (2001) Water transport by the human Na+-coupled glutamate cotransporter expressed in Xenopus oocytes. J Physiol 530:367–378

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Machtens JP, Fahlke C, Kovermann P (2011) Noise analysis to study unitary properties of transporter-associated ion channels. Channels 5:468–472

    Article  PubMed  CAS  Google Scholar 

  40. Machtens JP, Kortzak D, Lansche C, Leinenweber A, Kilian P, Begemann B, Zachariae U, Ewers D, de Groot BL, Briones R, Fahlke C (2015) Mechanisms of anion conduction by coupled glutamate transporters. Cell 160:542–553. doi:10.1016/j.cell.2014.12.035

    Article  PubMed  CAS  Google Scholar 

  41. Machtens JP, Kovermann P, Fahlke C (2011) Substrate-dependent gating of anion channels associated with excitatory amino acid transporter 4. J Biol Chem 286:23780–23788. doi:10.1074/jbc.M110.207514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. MacKinnon R (2004) Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew Chem (Intern ed in English) 43:4265–4277. doi:10.1002/anie.200400662

    Article  CAS  Google Scholar 

  43. Mager S, Min C, Henry DJ, Chavkin C, Hoffman BJ, Davidson N, Lester HA (1994) Conducting states of a mammalian serotonin transporter. Neuron 12:845–859

    Article  PubMed  CAS  Google Scholar 

  44. Mager S, Naeve J, Quick M, Labarca C, Davidson N, Lester HA (1993) Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10:177–188

    Article  PubMed  CAS  Google Scholar 

  45. Melzer N, Biela A, Fahlke C (2003) Glutamate modifies ion conduction and voltage-dependent gating of excitatory amino acid transporter-associated anion channels. J Biol Chem 278:50112–50119

    Article  PubMed  CAS  Google Scholar 

  46. Melzer N, Torres-Salazar D, Fahlke C (2005) A dynamic switch between inhibitory and excitatory currents in a neuronal glutamate transporter. Proc Natl Acad Sci USA 102:19214–19218

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Mim C, Balani P, Rauen T, Grewer C (2005) The glutamate transporter subtypes EAAT4 and EAATs 1-3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism. J Gen Physiol 126:571–589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Nelson N, Sacher A, Nelson H (2002) The significance of molecular slips in transport systems. Nat Rev Mol Cell Biol 3:876–881

    Article  PubMed  CAS  Google Scholar 

  49. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    Article  PubMed  CAS  Google Scholar 

  50. Otis TS, Jahr CE (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosc 18:7099–7110

    CAS  Google Scholar 

  51. Otis TS, Kavanaugh MP (2000) Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci 20:2749–2757

    PubMed  CAS  Google Scholar 

  52. Palmer MJ, Taschenberger H, Hull C, Tremere L, von Gersdorff H (2003) Synaptic activation of presynaptic glutamate transporter currents in nerve terminals. J Neurosci 23:4831–4841

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Picaud SA, Larsson HP, Grant GB, Lecar H, Werblin FS (1995) Glutamate-gated chloride channel with glutamate-transporter-like properties in cone photoreceptors of the tiger salamander. J Neurophysiol 74:1760–1771

    PubMed  CAS  Google Scholar 

  54. Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462:880–885

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Ryan RM, Kortt NC, Sirivanta T, Vandenberg RJ (2010) The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1. J Neurochem 114:565–575. doi:10.1111/j.1471-4159.2010.06796.x

    Article  PubMed  CAS  Google Scholar 

  56. Ryan RM, Mindell JA (2007) The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 14:365–371

    Article  PubMed  CAS  Google Scholar 

  57. Ryan RM, Mitrovic AD, Vandenberg RJ (2004) The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J Biol Chem 279:20742–20751

    Article  PubMed  CAS  Google Scholar 

  58. Ryan RM, Vandenberg RJ (2002) Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J Biol Chem 277:13494–13500

    Article  PubMed  CAS  Google Scholar 

  59. Schenck S, Wojcik SM, Brose N, Takamori S (2009) A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat Neurosci 12:156–162. doi:10.1038/nn.2248

    Article  PubMed  CAS  Google Scholar 

  60. Schneider N, Cordeiro S, Machtens JP, Braams S, Rauen T, Fahlke C (2014) Functional properties of the retinal glutamate transporters GLT-1c and EAAT5. J Biol Chem 289:1815. doi:10.1074/jbc.M113.517177

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Seal RP, Shigeri Y, Eliasof S, Leighton BH, Amara SG (2001) Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance. Proc Natl Acad Sci USA 98:15324–15329

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Shabaneh M, Rosental N, Kanner BI (2014) Disulfide cross-linking of transport and trimerization domains of a neuronal glutamate transporter restricts the role of the substrate to the gating of the anion conductance. J Biol Chem 289:11175–11182. doi:10.1074/jbc.M114.550277

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Shrivastava IH, Jiang J, Amara SG, Bahar I (2008) Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter. J Biol Chem 283:28680–28690. doi:10.1074/jbc.M800889200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Stolzenberg S, Khelashvili G, Weinstein H (2012) Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh. J Phys Chem B 116:5372–5383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Tao Z, Grewer C (2007) Cooperation of the conserved aspartate 439 and bound amino acid substrate is important for high-affinity Na+ binding to the glutamate transporter EAAC1. J Gen Physiol 129:331–344

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Tao Z, Rosental N, Kanner BI, Gameiro A, Mwaura J, Grewer C (2010) Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101. J Biol Chem 285:17725–17733

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Tao Z, Zhang Z, Grewer C (2006) Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1. J Biol Chem 281:10263–10272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Torres-Salazar D, Fahlke C (2007) Neuronal glutamate transporters vary in substrate transport rate but not in unitary anion channel conductance. J Biol Chem 282:34719–34726

    Article  PubMed  CAS  Google Scholar 

  69. Torres-Salazar D, Jiang J, Divito CB, Garcia-Olivares J, Amara SG (2015) A mutation in transmembrane domain 7 (TM7) of excitatory amino acid transporters disrupts the substrate-dependent gating of the intrinsic anion conductance and drives the channel into a constitutively open state. J Biol Chem 290:22977–22990. doi:10.1074/jbc.M115.660860

    Article  PubMed  CAS  Google Scholar 

  70. Vandenberg RJ, Handford CA, Campbell EM, Ryan RM, Yool AJ (2011) Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1. Biochem J 439:333–340. doi:10.1042/bj20110905

    Article  PubMed  CAS  Google Scholar 

  71. Verdon G, Boudker O (2012) Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 19:355–357

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Verdon G, Oh S, Serio RN, Boudker O (2014) Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. eLife 3:e02283. doi:10.7554/eLife.02283

    Article  PubMed Central  PubMed  Google Scholar 

  73. Veruki ML, Morkve SH, Hartveit E (2006) Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci 9:1388–1396

    Article  PubMed  CAS  Google Scholar 

  74. Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    Article  PubMed  CAS  Google Scholar 

  75. Wadiche JI, Kavanaugh MP (1998) Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J Neurosci 18:7650–7661

    PubMed  CAS  Google Scholar 

  76. Watzke N, Bamberg E, Grewer C (2001) Early intermediates in the transport cycle of the neuronal excitatory amino acid carrier EAAC1. J Gen Physiol 117:547–562

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Wersinger E, Schwab Y, Sahel JA, Rendon A, Pow DV, Picaud S, Roux MJ (2006) The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J Physiol 577:221–234

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Winter N, Kovermann P, Fahlke C (2012) A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents. Brain 135:3416–3425. doi:10.1093/brain/aws255

    Article  PubMed  Google Scholar 

  79. Wright EM, Diamond JM (1977) Anion selectivity in biological systems. Physiol Rev 57:109–156

    PubMed  CAS  Google Scholar 

  80. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by the Deutsche Forschungsgemeinschaft (FA301/9 to ChF). The authors gratefully acknowledge the computing time granted on the supercomputers JUROPA and JURECA at Jülich Supercomputing Centre (JSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Fahlke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahlke, C., Kortzak, D. & Machtens, JP. Molecular physiology of EAAT anion channels. Pflugers Arch - Eur J Physiol 468, 491–502 (2016). https://doi.org/10.1007/s00424-015-1768-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1768-3

Keywords

Navigation