Skip to main content
Log in

GABAA receptor diversity and pharmacology

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Because of its control of spike-timing and oscillatory network activity, γ-aminobutyric acid (GABA)-ergic inhibition is a key element in the central regulation of somatic and mental functions. The recognition of GABAA receptor diversity has provided molecular tags for the analysis of distinct neuronal networks in the control of specific pharmacological and physiological brain functions. Neurons expressing α1GABAA receptors have been found to mediate sedation, whereas those expressing α2GABAA receptors mediate anxiolysis. Furthermore, associative temporal and spatial memory can be regulated by modulating the activity of hippocampal pyramidal cells via extrasynaptic α5GABAA receptors. In addition, neurons expressing α3GABAA receptors are instrumental in the processing of sensory motor information related to a schizophrenia endophenotype. Finally, during the postnatal development of the brain, the maturation of GABAergic interneurons seems to provide the trigger for the experience-dependent plasticity of neurons in the visual cortex, with α1GABAA receptors setting the time of onset of a critical period of plasticity. Thus, particular neuronal networks defined by respective GABAA receptor subtypes can now be linked to the regulation of various clearly defined behavioural patterns. These achievements are of obvious relevance for the pharmacotherapy of certain brain disorders, in particular sleep dysfunctions, anxiety disorders, schizophrenia and diseases associated with memory deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alger BE, Pitler TA (1995) Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci 18:333–340

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Hutson PH, Collinson N, Marchall G, Bentley G, Moyes C, Cook SM, Collins I, Wafford K, McKernan RM, Dawson GR (2005) Anxiogenic properties of an inverse agonist selective for α3 subunit-containing GABAA receptors. Br J Pharmacol 144:357–366

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Wafford K, Tye SJ, Cook S, Sohal B, Pike A, Sur C, Melillo D, Bristow L, Bromidge F, et al (2006a) TPA023 an agonist selective for α2- and α3-containing GABAA receptors, is a non-sedating anxiolytic in rodents and primates. J Pharm Exp Ther 316:410–422

    Article  CAS  Google Scholar 

  • Atack JR, Wafford K, Tye SJ, Cook S, Sohal B, Pike A, Sur C, Melillo D, Bristow L, Bromidge F, et al (2006b) The in vivo properties of pagoclone in rat are most likely mediated by 5′-hydroxy pagoclone. Neuropharmacology (in press)

  • Barnard EA, Skolnick P, Olsen RW, Möhler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) Subtypes of γ-aminobutyric acidA receptors: classification on the bases of subunit structure and receptor function. Pharmacol Rev 50:291–313

    PubMed  CAS  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575

    Article  PubMed  CAS  Google Scholar 

  • Benson J, Löw K, Keist R, Möhler H, Rudolph U (1998) Pharmacology of recombinant GABAA receptors rendered diazepam-insensitive by point-mutated α-subunits. FEBS Lett 431:400–404

    Article  PubMed  CAS  Google Scholar 

  • Bianchi MT, McDonald RL (2003) Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci 23:10934–10943

    PubMed  CAS  Google Scholar 

  • Bormann J (2000) The “ABC” of GABA receptors. Trends Pharmacol Sci 21:16–19

    Article  PubMed  CAS  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol (Lond) 497:753–759

    CAS  Google Scholar 

  • Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage independent potassium conductance. Nature 409:88–92

    Article  PubMed  CAS  Google Scholar 

  • Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (2002) Pharmacological characterization of a novel cell line expressing human α4β3δ GABAA receptors. Br J Pharmacol 136:965–974

    Article  PubMed  CAS  Google Scholar 

  • Brussaard AB, Herbison AE (2000) Long-term plasticity of postsynaptic GABAA-receptor function in the adult brain: insights from the oxytocin neurone. Trends Neurosci 23:190–195

    Article  PubMed  CAS  Google Scholar 

  • Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 106:231–232

    PubMed  CAS  Google Scholar 

  • Chambers MS, Attack JR, Broughton HB, Collinson N, Cook S, Dawson GR, Hobbs SC, Marshall G, Maubach KA, Pillai GV, Reeve AJ, MacLeod AM (2003) Identification of a novel, selective GABAA α5 receptor inverse agonist which enhances cognition. J Med Chem 46:2227–2240

    Article  PubMed  CAS  Google Scholar 

  • Chambers MS, Atack JR, Carling RW, Collinson N, Cook SM, Dawson GR, Ferris P, Hobbs SC, O’Connor D, Marshall G et al (2004) An orally bioavailable, functionally selective inverse agonist at the benzodiazepine site of GABAA alpha5 receptors with cognition enhancing properties. J Med Chem 47:5829–5832

    Article  PubMed  CAS  Google Scholar 

  • Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38:461–472

    Article  PubMed  CAS  Google Scholar 

  • Cirone J, Rosahl TW, Reynolds DS, Newman RJ, O’Meara GF, Hutson PH, Wafford KA (2004) Gamma-aminobutyric acid type A receptor beta 2 subunit mediates the hypothermic effect of etomidate in mice. Anesthesiology 100:1438–1445

    Article  PubMed  CAS  Google Scholar 

  • Collins I, Moyes C, Davey WB, Rowley M, Bromidge FA, Quirk K, et al (2002) 3-Heteroaryl-2-pyridones: benzodiazepine site ligands with functional delectivity for alpha 2/alpha 3-subtypes of human GABA(A) receptor-ion channels. J Med Chem 45:1887–1900

    Article  PubMed  CAS  Google Scholar 

  • Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, et al (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J Neurosci 22:5572–5580

    PubMed  CAS  Google Scholar 

  • Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Bluethmann H, Möhler H, Rudolph U (2002) Trace fear conditioning involves hippocampal a5 GABAA receptors. Proc Natl Acad Sci USA 99:8980–8985

    Article  PubMed  CAS  Google Scholar 

  • Dämgen K, Lüddens H (1999) Zaleplon diaplays a selecitvity to recombinant GABAA receptors different from zolpidem, zopiclone and benzodiazepines. Neurosci Res Comm 25:139–148

    Article  Google Scholar 

  • Dellini-Stula A, Berdah-Tordjman D (1996) Antipsychotic effects of bretazenil, a partial benzodiazepine agonist in acute schizophrenia—a study group report. J Psychiatr Res 30:239–250

    Article  Google Scholar 

  • Devor A, Fritschy JM, Yarom Y (2001) Spatial distribution and subunit composition of GABAA receptors in the inferior olivary nucleus. J Neurophysiol 85:1686–1696

    PubMed  CAS  Google Scholar 

  • Dias R, et al (2005) Evidence for a significant role of alpha3–containing GABAA receptors in mediating the anxiolytic effects of benzodiazepines. J Neurosci 25:10682–10688

    Article  PubMed  CAS  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, Brauchart D, Boresch S, Sieghart W (2003) Comparative modeling of GABAA receptors: limits, insights, future developments. J Neuroscience 4:933–943

    Google Scholar 

  • Fagiolini M, Hensch T (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404:183–186

    Article  PubMed  CAS  Google Scholar 

  • Fagiolini M, Fritschy JM, Löw K, Möhler H, Rudolph U, Hensch T (2004) Specific GABAA circuits for visual cortical plasticity. Science 303:1681–1683

    Article  PubMed  CAS  Google Scholar 

  • Ferster D (2004) Blocking plasticity in the visual cortex. Science 303:1619–1621

    Article  PubMed  CAS  Google Scholar 

  • Foeller E, Feldmann DE (2004) Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol 14:89–95

    Article  PubMed  CAS  Google Scholar 

  • Foster AC, Pelleymounter MA, Cullen MJ, Lewis D, Joppa M, Chen TK, Bozigian HP, Gross RS, Gogas KR (2004) In vivo pharmacological characterization of indiplon, a novel pyrazolopyrimidine sedative-hypnotic. J Pharmacol Exp Ther 311:547–559

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:345–470

    Article  CAS  Google Scholar 

  • Fritschy JM, Brünig I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98:299–323

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM, Möhler H (1995) GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM, Crestani F, Rudolph U, Möhler H (2004) GABAA receptor subtypes with special reference to memory function and neurological disorders. In: Hensch TK, Fagiolini M (eds) Excitatory inhibitory balance: synapses, circuits and systems plasticity. Kluwer Academic/Plenum, New York, pp 215–228

    Google Scholar 

  • Gao B, Fritschy JM, Benke D, Möhler H (1993) Neuron-specific expression of GABAA receptor subtypes: differential associations of the α1- and α3-subunits with serotonergic and GABAergic neurons. Neuroscience 54:881–892

    Article  PubMed  CAS  Google Scholar 

  • Geiger JR, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signalling at a principal neuron-interneuron synapse. Neuron 18:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Perrault G, Simiand J, Cohen C, Granger P, Depoortere H, Francon D, Avenet P, Schoemaker H, Evanno Y, et al (2003) SL651498, a GABAA receptor agonist with subtype-selective efficacy, as a potential treatment for generalized anxiety disorder and muscle spasms. CNS Drug Rev 9:3–20

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Wang Y, Markam H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    Article  PubMed  CAS  Google Scholar 

  • Haefeli W, Martin JR, Schoch P (1990) Novel anxiolytics that act as partial agonists at benzodiazepine receptors. Trends Pharmacol Sci 11:452–456

    Article  Google Scholar 

  • Harris KD, Henze DA, Hirase H, Leinekugel X, Dragoi G, Czurko A, Buzsaki G (2002) Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417:738–741

    Article  PubMed  CAS  Google Scholar 

  • Hauser J, Rudolph U, Keist R, Möhler H, Feldon J, Yee B (2005) Hippocampal α5 subunit containing GABAA receptors modulate expression of prepulse inhibition. Mol Psychiatry 10:201–207

    Article  PubMed  CAS  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nature Rev Neurosci 6:877–888

    Article  CAS  Google Scholar 

  • Hensch TK, Stryker MP (2004) Columnar architecture sculped by GABA circuits in developing cat visual cortex. Science 303:1678–1681

    Article  PubMed  CAS  Google Scholar 

  • Huckle R (2004) Gaboxadol Lundbeck/Merck. Curr Opin Investig Drugs 5:766–773

    PubMed  CAS  Google Scholar 

  • Huntsmann MM, Porcello DM, Homanics GE, DeLorey TM, Huguenard JR (1999) Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 283:541–543

    Article  Google Scholar 

  • Hutcheon B, Morley P, Poulter MO (2000) Developmental change in GABAA receptor desensitization kinetics and its role in synapse function in rat cortical neurons. J Pysiol (Lond) 522:3–17

    Article  CAS  Google Scholar 

  • Jüttner R, Meier J, Grantyn R (2001) Slow IPSC kinetics, low levels of α1 subunit expression and paired-pulse depression are distinct properties of neonatal inhibitory GABAergic synaptic connections in the mouse superior colliculus. Eur J Neurosci 13:2088–2098

    Article  PubMed  Google Scholar 

  • Jurd R, Arras M, Lambert S, Drexler B, Siegwart R, Crestani F, Zaugg M, Vogt KE, Ledermann B, Antkowiak B, et al (2003) General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J 17:250–252

    PubMed  CAS  Google Scholar 

  • Kandler K (2004) Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Curr Opin Neurobiol 14:96–104

    Article  PubMed  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Article  PubMed  CAS  Google Scholar 

  • Katona I, Sperlagh B, Sik A, Käfalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558

    PubMed  CAS  Google Scholar 

  • Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21:9506–9518

    PubMed  CAS  Google Scholar 

  • Klausberger T, Roberts JD, Somogyi P (2002) Cell type- and input-specific differences in the number and subtypes of synaptic GABAA receptors in the hippocampus. J Neurosci 22:2513–2521

    PubMed  CAS  Google Scholar 

  • Klausberger T, Magill PJ, Marton LF, Roberts JDB, Cobden PM, Buzsaki G, Somogyi P (2003) Brain state- and cell type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848

    Article  PubMed  CAS  Google Scholar 

  • Kopp C, Rudolph U, Tobler I (2004a) Sleep EEG changes after zolpidem in mice. Neuroreport 15:2299–2302

    Article  PubMed  CAS  Google Scholar 

  • Kopp C, Rudolph U, Löw K, Tobler I (2004b) Modulation of rhythmic brain activity by diazepam: GABA(A) receptor subtype and state specificity. Proc Natl Acad Sci USA 101:3674–3679

    Article  PubMed  CAS  Google Scholar 

  • Krasowski MD, Koltchine VV, Rick CE, Ye Q, Finn SE, Harrison NL (1998) Propofol and other intravenous anesthetics have sites of action on the gamma-aminobutyric acid type A receptor distinct from that for isoflurane. Mol Pharmacol 53:530–538

    PubMed  CAS  Google Scholar 

  • Kreitzer AC, Regehr WG (2001a) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717–727

    Article  PubMed  CAS  Google Scholar 

  • Kreitzer AC, Regehr WG (2001b) Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci 21:RC174

    PubMed  CAS  Google Scholar 

  • Lambert S, Arras M, Vogt KE, Rudolph U (2005) Isoflurane-induced surgical tolerance mediated only in part by beta3-containing GABA(A) receptors. Eur J Pharmacol 516:23–27

    Article  PubMed  CAS  Google Scholar 

  • Lancel M, Steiger A (1999) Sleep and its modulation by drugs that affect GABAA receptor function. Angew Chem Int Ed 111:2852–2864

    Article  Google Scholar 

  • Langen B, Egerland U, Bernoster K, Dost R, Unverferth K, Rundfeldt C (2005) Characterization in rats of the anxiolytic potential of ELB139 [1-(4-chlorophenyl)-4-piperidin-1-yl-1,5-dihydro-imidazol-2-on], a new agonist at the benzodiazepine binding site of the GABAA receptor. J Pharmacol Exp Ther 314:717–724

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  PubMed  CAS  Google Scholar 

  • Liao M, Sonner JM, Jurd R, Rudolph U, Borghese CM, Harris RA, Laster MJ, Eger EI 2nd (2005) Beta3-containing gamma-aminobutyric acidA receptors are not major targets for the amnesic and immobilizing actions of isoflurane. Anesth Analg 101:412–418

    Article  PubMed  CAS  Google Scholar 

  • Lippa A, Czobor P, Stark J, Beer B, Kostakis E, Gravielle M, Bandyopadhyay S, Russek SJ, Gibbs TT, Farb DH, Skolnick P (2005) Selective anxiolysis produced by ocinaplon, a GABA(A) receptor modulator. Proc Natl Acad Sci USA 102:7380–7385

    Article  PubMed  CAS  Google Scholar 

  • Llano I, Leresche N, Marty A (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6:565–574

    Article  PubMed  CAS  Google Scholar 

  • Löw K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Rulicke T, Bluethmann H, Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    Article  PubMed  Google Scholar 

  • Maejima T, Ohno-Shosaku T, Kano M (2001) Endogenous cannabinoid mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29:729–738

    Article  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silbergerb G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 10:793–807

    Article  CAS  Google Scholar 

  • Marowsky A, Fritschy JM, Vogt KE (2004) Functional mapping of GABAA receptor subtypes in the amygdala. Eur J Neurosci 20:1281–1289

    Article  PubMed  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    Article  PubMed  CAS  Google Scholar 

  • Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:1811–1825

    Google Scholar 

  • McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 3:587–592

    Article  PubMed  CAS  Google Scholar 

  • Metha MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–746

    Article  CAS  Google Scholar 

  • Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, et al (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389:385–389

    Article  PubMed  CAS  Google Scholar 

  • Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569–575

    Article  PubMed  CAS  Google Scholar 

  • Möhler H (2001) Functions of GABA receptors: pharmacology and pathophysiology. In: Möhler H (ed) Pharmacology of GABA and glycine neurotransmission. Springer, Berlin Heidelberg New York, pp 101–116

    Google Scholar 

  • Möhler H (2002) Pathophysiological aspects of diversity in neuronal inhibition: a new benzodiazepine pharmacology. Dialogues Clin Neurosci 4:261–269

    Google Scholar 

  • Möhler H, Benke D, Fritschy JM, Benson J (2000) The benzodiazepine site of GABAA receptors, In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott, Philadelphia, pp 97–112

    Google Scholar 

  • Möhler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharm Exptl Ther 300:2–8

    Article  Google Scholar 

  • Möhler H, Fritschy JM, Vogt K, Crestani F, Rudolph U (2005) Pathophysiology and pharmacology of GABAA receptors. In: Holsboer F, Ströhle A (eds) Anxiety and anxiolytic drugs. Handbook of experimental pharmacology, vol 169. Springer, Berlin Heidelberg New York, pp 225–247

    Google Scholar 

  • Monyer H, Markram H (2004) Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci 27:90–97

    Article  PubMed  CAS  Google Scholar 

  • Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2:240–250

    Article  PubMed  CAS  Google Scholar 

  • Navarro JF, Buron E, Martin-Lopez M (2002) Anxiogenic-like activity of L-655,708, a selective ligand for the benzodiazepine site of GABA(A) receptors which contain the alpha-5 subunit, in the elevated plus-maze test. Prog Neuropsychopharmacol Biol Psychiatry 26:1389–1392

    Article  PubMed  CAS  Google Scholar 

  • Navarro JF, Buron E and Martin-Lopez M (2004) Behavioral profile of L-655 708, a selective ligand for the benzodiazepine site of GABAA receptors which contain the α5 subunit in social encounters between male mice. Aggress Behav 30:319–325

    Article  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Stephenson FA, Somogyi P (1996) The α6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J Neurosci 16:103–114

    PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W and Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

    PubMed  CAS  Google Scholar 

  • Nyíri G, Freund TF and Somogyi P (2001) Input-dependent synaptic targeting of a2 subunit containing GABAA receptors in hippocampal pyramidal cells of the rat. Eur J Neurosci 13:428–442

    Article  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford, pp 477–543

    Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    Article  PubMed  CAS  Google Scholar 

  • Paulsen O, Moser EI (1998) A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 21:273–278

    Article  PubMed  CAS  Google Scholar 

  • Pawelzik H, Hughes DI, Thomson AM (2002) Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurons in CA1 of the adult rat hippocampus. J Comp Neurol 443:346–367

    Article  PubMed  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    Article  PubMed  CAS  Google Scholar 

  • Pitler TA, Alger BE (1992) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 12:4122–4132

    PubMed  CAS  Google Scholar 

  • Pitler TA, Alger BE (1994) Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron 13:1447–1455

    Article  PubMed  CAS  Google Scholar 

  • Pöltl A, Hauer B, Fuchs K, Tretter V, Sieghart W (2003) Subunit composition and quantitative importance of GABAA receptors subtypes in the cerebellum of mouse and rat. J Neurochem 87:1444–1455

    Article  PubMed  CAS  Google Scholar 

  • Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal develpment. Trends Neurosci 28:278–283

    Article  PubMed  CAS  Google Scholar 

  • Reynolds DS, Rosahl TW, Cirone J, O’Meara GF, Haythornthwaite A, Newman RJ, Myers J, Sur C, Howell O, Rutter AR, et al (2003) Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 23:8608–8617

    PubMed  CAS  Google Scholar 

  • Rijnsoever C van, Tauber M, Choulli MK, Keist R, Rudolph U, Möhler H, Fritschy JM, Crestani F (2004) Requirement of α5 GABAA receptors for the development of tolerance to the sedative action of diazepam in mice. J Neurosci 24:6785–6790

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Möhler H (2004) Analysis of GABAA receptor function and dissection of pharmacology of benzodiazepines and general anaesthetics by mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Möhler H (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6:18–23

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brünig I, Benson J, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401:796–800

    Article  PubMed  CAS  Google Scholar 

  • Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABAA receptor subtypes. Curr Top Med Chem 2:795–816

    Article  PubMed  CAS  Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172

    Article  PubMed  CAS  Google Scholar 

  • Sternfeld F, Carling RW, Jelley RA, Ladduwahetty T, Merchant KJ, Moore KW, Reeve AJ, Street LJ, O’Connor D, Sohal B, et al (2004) Selective, orally active gamma-amonobutyric acidA alpha5 receptor inverse agonists as cognition enhancers. J Med Chem 47:2176–2179

    Article  PubMed  CAS  Google Scholar 

  • Storustovu S, Ebert B (2003) Gaboxadol: in vitro interaction studies with benzodiazepines and ethanol suggest functional selectivity. Eur J Pharmacol 467:49–56

    Article  PubMed  CAS  Google Scholar 

  • Tobler I, Kopp C, Deboer T, Rudolph U (2001) Diazepam-induced changes in sleep: role of the α1GABAA receptor subtype. Proc Natl Acad Sci USA 98:6464–6469

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Draguhn A, Whittington MA, Baldeweg T, Bibbig A, Buhl EH, Schmitz D (2002) Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev Neurosci 13:1–30

    PubMed  Google Scholar 

  • Vicini S, Ferguson C, Prybylowski K, Kralic J, Morrow AL, Homanics GE (2001) GABAA receptor α1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J Neurosci 21:3009–3016

    PubMed  CAS  Google Scholar 

  • Vincent P, Marty A (1993) Neighboring cerebellar Purkinje cell communicate via retrograde inhibition of common presynaptic interneurons. Neuron 11:885–893

    Article  PubMed  CAS  Google Scholar 

  • Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances alpha4 beta3 delta and alpha6 beta3 delta gamma-aminobutyric acid type A receptors at low concentration known to affect humans. Proc Natl Acad Sci USA 100:15218–15223

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ (2003) The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Dev 6:648–655

    CAS  Google Scholar 

  • Whiting P, Wafford KA, McKernan RM (2000) Pharmacologic subtypes of GABAA receptors based on subunit composition In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott, Philadelphia, pp 113–126

    Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    PubMed  CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–92 [erratum appears in Nature 2001 411:974]

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Hauser J, Dolgov VV, Keist R, Möhler H, Rudolph U, Feldon J (2004) GABA receptors containing the α5 subunit mediate the trance effect in aversive and appetitive conditioning and extinction of conditioned fear. Eur J Neurosci 20:1928–1936

    Article  PubMed  Google Scholar 

  • Yee BK, et al (2005) A schizophrenia-related sensorimotor deficit links α3-containing GABAA receptors to a dopamine hyperfunction. Proc Natl Acad Sci USA 102:17154–17159

    Article  PubMed  CAS  Google Scholar 

  • Zeller A, Arras M, Lazaris A, Jurd R, Rudolph U (2005) Distinct molecular targets for the central respiratory and cardiac actions of the general anesthetics etomidate and propofol. FASEB J 12:1677–1679

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Möhler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möhler, H. GABAA receptor diversity and pharmacology. Cell Tissue Res 326, 505–516 (2006). https://doi.org/10.1007/s00441-006-0284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0284-3

Keywords

Navigation