Skip to main content

Advertisement

Log in

Carbon monoxide prevents apoptosis induced by uropathogenic Escherichia coli toxins

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Urinary tract infections (UTIs) are often caused by Escherichia coli (E. coli). Previous studies have demonstrated that up-regulation of heme oxygenase-1 (HO-1) may trigger a survival mechanism against renal cell death induced by E. coli toxins. The present study analyses the role of carbon monoxide (CO), an end product of HO-1, in the survival mechanism. Moreover, we identified hemolysin as a putative pro-apoptotic toxin in the E. coli supernatant. Tubular cells were incubated with CO in the presence or absence of E. coli toxins. Uropathogenic or transformants of non-pathogenic strains expressing hemolysin were used. We found that the survival pathway during E. coli infection might be activated by HO-1-derived production of CO. The protection by CO was also associated with up-regulation of p21 protein expression. Furthermore, we found that in children with pyelonephritis, all the E. coli strains expressing hemolysin induced apoptosis. In E. coli strains not expressing hemolysin, only 45% of the strains could induce apoptosis. In conclusion, generation of CO elicited by HO-1 could promote survival signaling in renal cells. Hemolysin is one of the secreted toxins that are involved in inducing apoptosis during UTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hansson SUJ (1999) Urinary tract infection, in pediatric nephrology. In: Barrat EA, Harmon W (eds) Urinary tract infection, in pediatric nephrology. Lippincott, Baltimore, pp 835–850

  2. Yang B, Johnson TS, Thomas GL, Watson PF, Wagner B, Skill NJ, Haylor JL, El Nahas AM (2001) Expression of apoptosis-related genes and proteins in experimental chronic renal scarring. J Am Soc Nephrol 12:275–288

    PubMed  Google Scholar 

  3. Ortiz A (2000) Renal cell loss through cell suicide. Kidney Int 58:2235–2236

    Article  PubMed  Google Scholar 

  4. Ortiz A, Lorz C, Justo P, Catalan MP, Egido J (2001) Contribution of apoptotic cell death to renal injury. J Cell Mol Med 5:18–32

    PubMed  Google Scholar 

  5. Qiu LQ, Sinniah R, Hsu SI (2004) Coupled induction of iNOS and p53 upregulation in renal resident cells may be linked with apoptotic activity in the pathogenesis of progressive IgA nephropathy. J Am Soc Nephrol 15:2066–2078

    Article  PubMed  Google Scholar 

  6. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90:9813–9817

    PubMed  Google Scholar 

  7. Chen M, Bao W, Aizman R, Huang P, Aspevall O, Gustafsson LE, Ceccatelli S, Celsi G (2004) Activation of extracellular signal-regulated kinase mediates apoptosis induced by uropathogenic Escherichia coli toxins via nitric oxide synthase: protective role of heme oxygenase-1. J Infect Dis 190:127–135

    Article  PubMed  Google Scholar 

  8. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  PubMed  Google Scholar 

  9. Platt JL, Nath KA (1998) Heme oxygenase: protective gene or Trojan horse. Nat Med 4:1364–1365

    Article  PubMed  Google Scholar 

  10. Thom SR, Fisher D, Xu YA, Notarfrancesco K, Ischiropoulos H (2000) Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide. Proc Natl Acad Sci USA 97:1305–1310

    Article  PubMed  Google Scholar 

  11. Song R, Kubo M, Morse D, Zhou Z, Zhang X, Dauber JH, Fabisiak J, Alber SM, Watkins SC, Zuckerbraun BS, Otterbein LE, Ning W, Oury TD, Lee PJ, McCurry KR, Choi AM (2003) Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am J Pathol 163:231–242

    PubMed  Google Scholar 

  12. Sass G, Soares MC, Yamashita K, Seyfried S, Zimmermann WH, Eschenhagen T, Kaczmarek E, Ritter T, Volk HD, Tiegs G (2003) Heme oxygenase-1 and its reaction product, carbon monoxide, prevent inflammation-related apoptotic liver damage in mice. Hepatology 38:909–918

    Article  PubMed  Google Scholar 

  13. Liu H, Mount DB, Nasjletti A, Wang W (1999) Carbon monoxide stimulates the apical 70-pS K+ channel of the rat thick ascending limb. J Clin Invest 103:963–970

    PubMed  Google Scholar 

  14. O’Donaughy TL, Walker BR (2000) Renal vasodilatory influence of endogenous carbon monoxide in chronically hypoxic rats. Am J Physiol Heart Circ Physiol 279:H2908–2915

    PubMed  Google Scholar 

  15. Lory S (1998) Secretion of proteins and assembly of bacterial surface organelles: shared pathways of extracellular protein targeting. Curr Opin Microbiol 1:27–35

    Article  PubMed  Google Scholar 

  16. Traylor LA, Mayeux PR (1997) Nitric oxide generation mediates lipid A-induced oxidant injury in renal proximal tubules. Arch Biochem Biophys 338:129–135

    Article  PubMed  Google Scholar 

  17. de Man P, van Kooten C, Aarden L, Engberg I, Linder H, Svanborg Eden C (1989) Interleukin-6 induced at mucosal surfaces by gram-negative bacterial infection. Infect Immun 57:3383–3388

    PubMed  Google Scholar 

  18. Doye A, Mettouchi A, Bossis G, Clement R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111:553–564

    Article  PubMed  Google Scholar 

  19. Trifillis AL, Donnenberg MS, Cui X, Russell RG, Utsalo SJ, Mobley HL, Warren JW (1994) Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int 46:1083–1091

    PubMed  Google Scholar 

  20. Warren JW, Mobley HL, Hebel JR, Trifillis AL (1995) Cytolethality of hemolytic Escherichia coli to primary human renal proximal tubular cell cultures obtained from different donors. Urology 45:706–710

    Article  PubMed  Google Scholar 

  21. Uhlen P, Laestadius A, Jahnukainen T, Soderblom T, Backhed F, Celsi G, Brismar H, Normark S, Aperia A, Richter-Dahlfors A (2000) Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405:694–697

    Article  PubMed  Google Scholar 

  22. Ulett GC, Bohnsack JF, Armstrong J, Adderson EE (2003) Beta-hemolysin-independent induction of apoptosis of macrophages infected with serotype III group B streptococcus. J Infect Dis 188:1049–1053

    Article  PubMed  Google Scholar 

  23. Lang PA, Kaiser S, Myssina S, Birka C, Weinstock C, Northoff H, Wieder T, Lang F, Huber SM (2004) Effect of Vibrio parahaemolyticus haemolysin on human erythrocytes. Cell Microbiol 6:391–400

    Article  PubMed  Google Scholar 

  24. Serlachius E, Sundelin B, Eklof AC, Jahnke M, Laestadius A, Aperia A (1997) Pyelonephritis provokes growth retardation and apoptosis in infant rat renal cortex. Kidney Int 51:1855–1862

    PubMed  Google Scholar 

  25. Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36:525–557

    PubMed  Google Scholar 

  26. Vogel M, Hess J, Then I, Juarez A, Goebel W (1988) Characterization of a sequence (hlyR) which enhances synthesis and secretion of hemolysin in Escherichia coli. Mol Gen Genet 212:76–84

    Article  PubMed  Google Scholar 

  27. Ludwig A, Vogel M, Goebel W (1987) Mutations affecting activity and transport of hemolysin in Escherichia coli. Mol Gen Genet 206:238–245

    Article  PubMed  Google Scholar 

  28. Schlager TA, Whittam TS, Hendley JO, Bhang JL, Wobbe CL, Stapleton A (2003) Variation in frequency of the virulence-factor gene in Escherichia coli clones colonizing the stools and urinary tracts of healthy prepubertal girls. J Infect Dis 188:1059–1064

    Article  PubMed  Google Scholar 

  29. Moore WJ (1972) Physical chemistry, Longman

  30. Battino R (1999) Carbon monoxide: Solubility Data Series. Pergamon

    Google Scholar 

  31. Chen M, Jahnukainen T, Bao W, Dare E, Ceccatelli S, Celsi G (2003) Uropathogenic Escherichia coli toxins induce caspase-independent apoptosis in renal proximal tubular cells via ERK signaling. Am J Nephrol 23:140–151

    Article  PubMed  Google Scholar 

  32. Wang J, Walsh K (1996) Resistance to apoptosis conferred by CDK inhibitors during myocyte differentiation. Science 273:359–361

    PubMed  MathSciNet  Google Scholar 

  33. Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, Soares MP (2000) Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 192:1015–1026

    Article  PubMed  Google Scholar 

  34. McMillan K, Bredt DS, Hirsch DJ, Snyder SH, Clark JE, Masters BS (1992) Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci USA 89:11141–11145

    PubMed  Google Scholar 

  35. Rodriguez F, Kemp R, Balazy M, Nasjletti A (2003) Effects of exogenous heme on renal function: Role of heme oxygenase and cyclooxygenase. Hypertension 42:680–684

    Article  PubMed  Google Scholar 

  36. Rodriguez F, Lamon BD, Gong W, Kemp R, Nasjletti A (2004) Nitric oxide synthesis inhibition promotes renal production of carbon monoxide. Hypertension 43:347–351

    Article  PubMed  Google Scholar 

  37. Wolff DG, Bidlack WR (1976) The formation of carbon monoxide during peroxidation of microsomal lipids. Biochem Biophys Res Commun 73:850–857

    Article  PubMed  Google Scholar 

  38. Smith RP, Klaassen ICD, Amdur MO, Doull J (1986) Casarett and Doull’s toxicology—The basic science of poisons, 3rd edn. Macmillan, p 223–244

  39. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428

    Article  PubMed  Google Scholar 

  40. Wang R, Wang Z, Wu L (1997) Carbon monoxide-induced vasorelaxation and the underlying mechanisms. Br J Pharmacol 121:927–934

    PubMed  Google Scholar 

  41. Gunther L, Berberat PO, Haga M, Brouard S, Smith RN, Soares MP, Bach FH, Tobiasch E (2002) Carbon monoxide protects pancreatic beta-cells from apoptosis and improves islet function/survival after transplantation. Diabetes 51:994–999

    PubMed  Google Scholar 

  42. Petrache I, Otterbein LE, Alam J, Wiegand GW, Choi AM (2000) Heme oxygenase-1 inhibits TNF-alpha-induced apoptosis in cultured fibroblasts. Am J Physiol Lung Cell Mol Physiol 278:L312–319

    PubMed  Google Scholar 

  43. Zhang X, Shan P, Otterbein LE, Alam J, Flavell RA, Davis RJ, Choi AM, Lee PJ (2003) Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem 278:1248–1258

    Article  PubMed  Google Scholar 

  44. Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N (2004) Protection of transplant-induced renal ischemia/reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 287:F979–989

    Article  PubMed  Google Scholar 

  45. Daemen MA, van ‘t Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, Vandenabeele P, Buurman WA (1999) Inhibition of apoptosis induced by ischemia reperfusion prevents inflammation. J Clin Invest 104:541–549

    PubMed  Google Scholar 

  46. Otterbein LE, Zuckerbraun BS, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith RN, Csizmadia E, Tyagi S, Akamatsu Y, Flavell RJ, Billiar TR, Tzeng E, Bach FH, Choi AM, Soares MP (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190

    Article  PubMed  Google Scholar 

  47. Inguaggiato P, Gonzalez-Michaca L, Croatt AJ, Haggard JJ, Alam J, Nath KA (2001) Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis. Kidney Int 60:2181–2191

    Article  PubMed  Google Scholar 

  48. Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ (1997) p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene 14:929–935

    Article  PubMed  Google Scholar 

  49. Megyesi J, Safirstein RL, Price PM (1998) Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest 101:777–782

    PubMed  Google Scholar 

  50. Xu SQ, El-Deiry WS (2000) p21(WAF1/CIP1) inhibits initiator caspase cleavage by TRAIL death receptor DR4. Biochem Biophys Res Commun 269:179–190

    Article  PubMed  Google Scholar 

  51. Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M (1998) Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 17:931–939

    Article  PubMed  Google Scholar 

  52. Jonas D, Schultheis B, Klas C, Krammer PH, Bhakdi S (1993) Cytocidal effects of Escherichia coli hemolysin on human T lymphocytes. Infect Immun 61:1715–1721

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Swedish Research Council (Grants: 12963, 14727, 07919), Frimurare Foundation, Jerrings Foundation, Samariten Foundation and Ronald McDonald Barnfond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Tofighi, R., Bao, W. et al. Carbon monoxide prevents apoptosis induced by uropathogenic Escherichia coli toxins. Pediatr Nephrol 21, 382–389 (2006). https://doi.org/10.1007/s00467-005-2140-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-005-2140-1

Keywords

Navigation