Skip to main content

Advertisement

Log in

A guide to assessing physical activity using accelerometry in cancer patients

  • Review Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Increased physical activity (PA) has been associated with a decreased risk for the occurrence and recurrence of many cancers. PA is an important outcome measure in rehabilitation interventions within cancer and may be used as a proxy measure of recovery or deterioration in health status following treatment and in the palliative care setting. PA is a complex multi-dimensional construct which is challenging to measure accurately. Factors such as technical precision and feasibility influence the choice of PA measurement tool. Laboratory-based methods are precise and mainly used for validation purposes, but their clinical applicability is limited. Self-report methods such as questionnaires are widely used due to their simplicity and reasonable cost; however, accuracy can be questionable. Objective methods such as pedometers measure step count but do not measure intensity, frequency or duration of activity. Accelerometers can measure PA behaviour at both ends of the movement spectrum from sedentary to vigorous levels of activity and can also provide objective data about the frequency, intensity, type and duration of PA. Balancing precision with ease of use, accelerometry may be the best measure of PA in cancer-based studies, but only a small number of studies have incorporated this measurement. This review will provide a background to PA and an overview of accelerometer measurement as well as technical and practical considerations, so this useful tool could be more widely incorporated into clinical trial research within cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Irwin ML, Smith AW, Mc Tiernan A, Ballard-Barbash R, Cronin K, Gilliland FD, Baumgartner RN, Baumgartner RN, Bernstein L (2008) Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the Health, Eating, Activity and Lifestyle Study. J Clin Oncol 26(24):3958–3964. doi:10.1200/JCO.2007

    Article  PubMed Central  PubMed  Google Scholar 

  2. Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA (2005) Physical activity and survival after breast cancer diagnosis. JAMA 293:2479–2486. doi:10.1001/jama.293.20.2479

    Article  CAS  PubMed  Google Scholar 

  3. Holick CN, Newcomb PA, Trentham-Dietz A (2008) Physical activity and survival after diagnosis of invasive breast cancer. Cancer Epidemiol Biomarkers Prev 17:379–386. doi:10.1158/1055-9965.EPI-07-0771

    Article  PubMed  Google Scholar 

  4. Ibrahim EM, Al-Homaidh A (2011) Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol 28(3):753–765. doi:10.1007/s12032-010-9536-x

    Article  PubMed  Google Scholar 

  5. Meyerhardt JA, Giovannucci EL, Holmes MD, Chan AT, Chan JA, Colditz GA, Fuchs CS (2006) Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol 24:3527–3534. doi:10.1200/JCO.2006.06.0855

    Article  PubMed  Google Scholar 

  6. Meyerhardt JA, Heseltine D, Niedziecki D, Hollis D, Saltz LB, Mayer RJ, Thomas J, Nelson H, Whittom R, Hantel A, Schilsky RL, Fuchs CS (2006) Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALBG 89803. J Clin Oncol 24:3535–3541

    Article  PubMed  Google Scholar 

  7. Dimeo F (2002) Radiotherapy-related fatigue and exercise for cancer patients: a review of the literature and suggestions for further research. Front Radiat Ther Oncol 37:49–56

    Article  PubMed  Google Scholar 

  8. Irwin ML, Crumlet D, Mc Tiernan A (2003) Physical activity levels before and after a diagnosis of breast carcinoma: the Health, Eating, Activity (HEAL) study. Cancer 97(7):1746–1757

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lynch BM, Cerin E, Owen N, Aitken JF (2007) Associations of leisure-time physical activity with quality of life in a large, population-based sample of colorectal cancer survivors. Cancer Causes Control 18:735–742

    Article  PubMed  Google Scholar 

  10. Pate RR, O’ Neill JR, Lobelo F (2008) The evolving definition of “sedentary”. Exerc Sports Sci Rev 36(4):173–178

    Article  Google Scholar 

  11. Owen N, Bauman A, Brown W (2009) Too much sitting: a novel and important predictor of chronic disease risk? Br J Sports Med 43:81–83

    Article  CAS  PubMed  Google Scholar 

  12. Lynch BM (2010) Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms. Cancer Epidemiol Biomarkers Prev 19(11):2691–2709. doi:10.1158/1055-9965.epi-10-0815

    Article  PubMed  Google Scholar 

  13. Stamatakis E, Hamer M, Tilling K, Lawlor DA (2012) Sedentary time in relation to cardio-metabolic risk factors: differential associations for self-report vs accelerometry in working age adults. Int J Epidemiol 41(5):1328–1337. doi:10.1093/ije/dys077

    Article  PubMed  Google Scholar 

  14. Carson V, Janssen I (2011) Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study. BMC Public Health 11:274. doi:10.1186/1471-2458-11-274

    Article  PubMed Central  PubMed  Google Scholar 

  15. Grontved A, Hu FB (2011) Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA 305(23):2448–2455. doi:10.1001/jama.2011.812

    Article  PubMed  Google Scholar 

  16. Thorp AA, Owen N, Neuhaus M, Dunstan DW (2011) Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am J Prev Med 41(2):207–215. doi:10.1016/j.amepre.2011.05.004

    Article  PubMed  Google Scholar 

  17. Campbell PT, Patel AV, Newton CC, Jacobs EJ, Gapstur SM (2013) Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol 31(7):876–885. doi:10.1200/jco.2012.45.9735

    Article  PubMed  Google Scholar 

  18. Marshall SJ, Ramirez E (2011) Reducing sedentary behavior: a new paradigm in physical activity promotion. Am J Lifestyle Med 5(6):518–530

    Article  Google Scholar 

  19. Potischman N, McCulloch CE, Byers T, Houghton L, Nemoto T, Graham S, Campbell TC (1991) Associations between breast cancer, plasma triglycerides, and cholesterol. Nutr Cancer 15(3–4):205–215

    Article  CAS  PubMed  Google Scholar 

  20. Camhi SM, Sisson SB, Johnson WD, Katzmarzyk PT, Tudor-Locke C (2011) Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health. Prev Med 52(5):358–360. doi:10.1016/j.ypmed.2011.01.030

    Article  PubMed  Google Scholar 

  21. Kim J, Tanabe K, Yokoyama N, Zempo H, Kuno S (2013) Objectively measured light-intensity lifestyle activity and sedentary time are independently associated with metabolic syndrome: a cross-sectional study of Japanese adults. Int J Behav Nutr Phys Act 10:30. doi:10.1186/1479-5868-10-30

    Article  PubMed Central  PubMed  Google Scholar 

  22. Maddocks M, Byrne A, Johnson CD, Wilson RH, Fearon KCH, Wilcock A (2010) Physical activity level as an outcome measure for use in cancer cachexia trials: a feasibility study. Support Cancer Care 18:1539–1544

    Article  Google Scholar 

  23. Maddocks M, Wilcock A (2012) Exploring physical activity level in patients with thoracic cancer: implications for use as an outcome measure. Support Care Cancer 20(5):1113–1116. doi:10.1007/s00520-012-1393-z

    Article  PubMed  Google Scholar 

  24. World Health Organization (1979) WHO handbook for reporting results of cancer treatment. Geneva

  25. Fearon KC (2008) Cancer cachexia: developing multimodal therapy for a multidimensional problem. Eur J Cancer 44(8):1124–1132. doi:10.1016/j.ejca.2008.02.033

    Article  CAS  PubMed  Google Scholar 

  26. Dahele M, Skipworth R, Wall L, Voss A, Preston T, Fearon K (2007) Objective physical activity and self-reported quality-of-life in patients receiving palliative chemotherapy. J Pain Symptom Manag 33(6):676–685

    Article  Google Scholar 

  27. Mantovani G, Madeddu C, Serpe R (2010) Improvement of physical activity as an alternative objective variable to measure treatment effects of anticachexia therapy in cancer patients. Curr Opin Support Palliat Care 4(4):259–265. doi:10.1097/SPC.0b013e32833b35c0

    Article  PubMed  Google Scholar 

  28. Matthews C, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP (2008) Amount of time spent in sedentary behaviours in the United States, 2003–2004. Am J Epidemiol 167:875–881

    Article  PubMed Central  PubMed  Google Scholar 

  29. Courneya KS, Vallance JK, Culos-Reed SN, McNeely ML, Bell GJ, Mackey JR, Yasui Y, Yuan Y, Matthews CE, Lau DC, Cook D, Friedenreich CM (2012) The Alberta moving beyond breast cancer (AMBER) cohort study: a prospective study of physical activity and health-related fitness in breast cancer survivors. BMC Cancer 12:525. doi:10.1186/1471-2407-12-525

    Article  PubMed Central  PubMed  Google Scholar 

  30. Feeney C, Reynolds JV, Hussey J (2011) Preoperative physical activity levels and postoperative pulmonary complications post-esophagectomy. Dis Esophagus 24(7):489–494. doi:10.1111/j.1442-2050.2010.01171.x

    Article  CAS  PubMed  Google Scholar 

  31. Guinan E, Hussey J, Broderick JM, Lithander FE, O’Donnell D, Kennedy MJ, Connolly EM (2013) The effect of aerobic exercise on metabolic and inflammatory markers in breast cancer survivors—a pilot study. Support Care Cancer. doi:10.1007/s00520-013-1743-5

  32. Walsh JM, Hussey J, Guinan E, OD D (2010) ‘Pragmatic randomized controlled trial of individually prescribed exercise versus usual care in a heterogeneous cancer survivor population’: a feasibility study PEACH trial: prescribed exercise after chemotherapy. BMC Cancer 10:42. doi:10.1186/1471-2407-10-42

    Article  PubMed Central  PubMed  Google Scholar 

  33. Caspersen CJ, Powell KE, Christensen GM (1985) Physical activity, exercise and physical fitness. Definitions and distinctions for health-related research. Public Health Rep 100:126–131

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Prince SA, Adamo KB, Hamel ME, Hardt J, Gorber SC, Tremblay M (2008) A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nut Phys Act 5 (56). doi:10.1186/1479-5868-5-56

  35. Je Y, Jeon JY, Giovannucci EL, Meyerhardt JA (2013) Association between physical activity and mortality in colorectal cancer: a Meta-analysis of prospective cohort studies. Int J Cancer. doi:10.1002/ijc.28208

  36. Colbert LH, Schoeller DA (2011) Expending our physical activity (measurement) budget wisely. J Appl Physiol 111(2):606–607. doi:10.1152/japplphysiol.00089.2011

    Article  PubMed  Google Scholar 

  37. Christensen C, Frey HM, Foenstelien E, Adadland E, Refsum HE (1983) A critical evaluation of energy expenditure estimates based on individual O2 consumption/heart rate curves and average daily heart rate. Am J Clin Nutr 37:468–472

    CAS  PubMed  Google Scholar 

  38. Spurr GB, Prentice AM, Murgatroyd PR, Goldberg GR, Reina JC, Christman NT (1988) Energy expenditure from minute-by-minute heart-rate monitoring: comparison with indirect calorimetry. Am J Clin Nutr 48:552–559

    CAS  PubMed  Google Scholar 

  39. Leonard WR (2003) Measuring human energy expenditure: what have we learned from the flex-heart rate method? Am J Hum Biol 15:479–489

    Article  PubMed  Google Scholar 

  40. Pujol JL, Quantin X, Chakra M (2009) Cardiorespiratory fitness in patients with advanced non-small cell lung cancer: why is this feature important to evaluate? Can it be improved? J Thorac Oncol 4(5):565–567. doi:10.1097/JTO.0b013e3181a0d761

    Article  PubMed  Google Scholar 

  41. Murphy SL (2009) Review of physical activity measurement using accelerometers in older adults: considerations for research design and conduct. Preventative Med 49:108–114

    Article  Google Scholar 

  42. Bassett DR, Mahar MT, Rowe DA, Morrow JR (2008) Walking and measurement. Med Sci Sports Exerc 40(7S):S529–S536

    Article  PubMed  Google Scholar 

  43. McClung CD, Zahiri CA, Higa JK, Amstutz HC, Schmalzried TP (2000) Relationship between body mass index and activity in hip or knee arthroplasty patients. J Orthop Res 18(1):35–39. doi:10.1002/jor.1100180106

    Article  CAS  PubMed  Google Scholar 

  44. Trost SG, McIver KL, Pate RR (2005) Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc 37(11 Suppl):S531–543

    Article  PubMed  Google Scholar 

  45. John D, Freedson P (2012) ActiGraph and Actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc 44(1 Suppl 1):S86–89. doi:10.1249/MSS.0b013e3182399f5e

    Article  PubMed Central  PubMed  Google Scholar 

  46. Mathie MJ, Coster ACF, Lovell NH (2004) Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas 25:R1–20

    Article  PubMed  Google Scholar 

  47. Chen KY, Bassett DR Jr (2005) The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc 37:S490–S500

    Article  PubMed  Google Scholar 

  48. Welk GJ (2005) Principles of design and analyses for the calibration of accelerometry-based activity monitors. Med Sci Sports Exerc 37(11 Suppl):S501–511

    Article  PubMed  Google Scholar 

  49. Troiano RP (2006) Translating accelerometer counts into energy expenditure: advancing the quest. J Appl Physiol 100(4):1107–1108. doi:10.1152/japplphysiol.01577.2005

    Article  PubMed  Google Scholar 

  50. Johannsen DL, Calabro MA, Stewart J, Franke W, Rood JC, Welk GJ (2010) Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc 42(11):2134–2140

    Article  PubMed  Google Scholar 

  51. Suzuki H, Asakawa A, Amitani H, Nakamura N, Inui A (2013) Cancer cachexia—pathophysiology and management. J Gastroenterol 48(5):574–594. doi:10.1007/s00535-013-0787-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lyden K, Kozey SL, Staudenmeyer JW, Freedson PS (2011) A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur J Appl Physiol 111(2):187–201. doi:10.1007/s00421-010-1639-8

    Article  PubMed Central  PubMed  Google Scholar 

  53. Howe CA, Staudenmayer JW, Freedson PS (2009) Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc 41(12):2199–2206. doi:10.1249/MSS.0b013e3181aa3a0e

    Article  PubMed  Google Scholar 

  54. Mar Fan HG, Houede-Tchen N, Chemerynsky I, Yi QL, Xu W, Harvey B, Tannock IF (2010) Menopausal symptoms in women undergoing chemotherapy-induced and natural menopause: a prospective controlled study. Ann Oncol 21(5):983–987. doi:10.1093/annonc/mdp394

    Article  CAS  PubMed  Google Scholar 

  55. Carr LJ, Mahar MT (2012) Accuracy of intensity and inclinometer output of three activity monitors for identification of sedentary behavior and light-intensity activity. J Obes 2012:460271. doi:10.1155/2012/460271

    Article  PubMed Central  PubMed  Google Scholar 

  56. Matthews CE (2005) Calibration of accelerometer output for adults. Med Sci Sports Exerc 37(11):S512–S522

    Article  Google Scholar 

  57. Kozey SL, Lyden K, Howe CA, Staudenmayer JW (2010) Accelerometer output and MET values of common physical activities. Med Sci Sports Exerc 42(9):1776–1784

    Article  PubMed Central  PubMed  Google Scholar 

  58. Jakicic JM, Marcus M, Gallagher KI, Randall C, Thomas E, Goss FL, Robertson RJ (2004) Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc 36(5):897–904

    Article  PubMed  Google Scholar 

  59. Rosenberger ME, Haskell WL, Albinali F, Mota S, Nawyn J, Intille S (2013) Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Med Sci Sports Exerc 45(5):964–975. doi:10.1249/MSS.0b013e31827f0d9c

    Article  PubMed  Google Scholar 

  60. Matthews CE, Hagstromer M, Pober DM, Bowles HR (2012) Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc 44(1 Suppl 1):S68–76. doi:10.1249/MSS.0b013e3182399e5b

    Article  PubMed Central  PubMed  Google Scholar 

  61. Masse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, Treuth M (2005) Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc 37(11 Suppl):S544–554

    Article  PubMed  Google Scholar 

  62. Herrmann SD, Barreira TV, Kang M, Ainsworth BE (2012) Impact of accelerometer wear time on physical activity data: a NHANES semisimulation data approach. Br J Sports Med. doi:10.1136/bjsports-2012-091410

  63. Pitta F, Troosters T, Spruit MA, Probst VS, Gosselink R (2005) Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171:972–977

    Article  PubMed  Google Scholar 

  64. Ward DS, Evenson KR, Vaughn A, Rodgers AB, Tropano RP (2005) Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc 37:582–588

    Article  Google Scholar 

  65. Gretebeck RJ, Montoyne HJ (1992) Variability of some objective measures of physical activity. Med Sci Sports Exerc 24(10):1167–1172

    Article  CAS  PubMed  Google Scholar 

  66. Broderick JM, Guinan E, Kennedy MJ, Hollywood D, Courneya KS, Culos-Reed SN, Bennett K, O’Donnell DM, Hussey J (2013) Feasibility and efficacy of a supervised exercise intervention in de-conditioned cancer survivors during the early survivorship phase: the PEACH trial J Cancer Survivorship. doi:10.1007/s11764-013-0294-6

  67. Dale D, Welk GJ, Matthews CE (2002) Physical activity measurement for health and research. Methods for assessing physical activity and challenges for research. Human Kinetics, Champaign

    Google Scholar 

  68. Esliger DW, Tremblay MS (2006) Technical reliability of three accelerometer models in a mechanical setup. Med Sci Sports Exerc 38:2173–2181. doi:10.1249/01.mss.0000239394.55461.08

    Article  PubMed  Google Scholar 

  69. Rogers LQ (2010) Objective monitoring of physical activity after a cancer diagnosis: challenges and opportunities for enhancing cancer control. Phys Ther Rev 15(3):224–237. doi:10.1179/174328810x12814016178872

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The Health Research Board, Ireland funded this work.

Conflict of interest

I can confirm that there is no financial relationship between the authors and the organization which funded this research. The corresponding author has full control of all primary data, which can be reviewed should this be required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Broderick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broderick, J.M., Ryan, J., O’Donnell, D.M. et al. A guide to assessing physical activity using accelerometry in cancer patients. Support Care Cancer 22, 1121–1130 (2014). https://doi.org/10.1007/s00520-013-2102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-013-2102-2

Keywords

Navigation