Skip to main content
Log in

Effects of sevoflurane on voltage-gated sodium channel Nav1.8, Nav1.7, and Nav1.4 expressed in Xenopus oocytes

  • Short Communication
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Sevoflurane is widely used as a volatile anesthetic in clinical practice. However, its mechanism is still unclear. Recently, it has been reported that voltage-gated sodium channels have important roles in anesthetic mechanisms. Much attention has been paid to the effects of sevoflurane on voltage-dependent sodium channels. To elucidate this, we examined the effects of sevoflurane on Nav 1.8, Nav 1.4, and Nav 1.7 expressed in Xenopus oocytes. The effects of sevoflurane on Nav 1.8, Nav 1.4, and Nav 1.7 sodium channels were studied by an electrophysiology method using whole-cell, two-electrode voltage-clamp techniques in Xenopus oocytes. Sevoflurane at 1.0 mM inhibited the voltage-gated sodium channels Nav1.8, Nav1.4, and Nav1.7, but sevoflurane (0.5 mM) had little effect. This inhibitory effect of 1 mM sevoflurane was completely abolished by pretreatment with protein kinase C (PKC) inhibitor, bisindolylmaleimide I. Sevoflurane appears to have inhibitory effects on Nav1.8, Nav1.4, and Nav 1.7 by PKC pathways. However, these sodium channels might not be related to the clinical anesthetic effects of sevoflurane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Lee SA, Choi JG, Zuo Z. Volatile anesthetics attenuate oxidative stress-reduced activity of glutamate transporter type 3. Anesth Analg. 2009;109:1506–10.

    Article  PubMed  CAS  Google Scholar 

  2. Hasegawa J, Takekoshi S, Nagata H, Osamura RY, Suzuki T. Sevoflurane stimulates MAP kinase signal transduction through the activation of PKC alpha and beta II in fetal rat cerebral cortex cultured neuron. Acta Histochem Cytochem. 2006;39:163–72.

    Article  PubMed  CAS  Google Scholar 

  3. Bouwman RA, van’t Hof FN, de Ruijter W, van Beek-Harmsen BJ, Musters RJ, de Lange JJ, Boer C. The mechanism of sevoflurane-induced cardioprotection is independent of the applied ischaemic stimulus in rat trabeculae. Br J Anaesth. 2006;97:307–14.

    Article  PubMed  CAS  Google Scholar 

  4. Yasui Y, Masaki E, Kato F. Sevoflurane directly excites locus coeruleus neurons of rats. Anesthesiology. 2007;107:992–1002.

    Article  PubMed  CAS  Google Scholar 

  5. Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57:397–409.

    Article  PubMed  CAS  Google Scholar 

  6. Ratnakumari L, Hemmings HC Jr. Inhibition of presynaptic sodium channels by halothane. Anesthesiology. 1998;88:1043–54.

    Article  PubMed  CAS  Google Scholar 

  7. Ouyang W, Wang G, Hemmings HC Jr. Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals. Mol Pharmacol. 2003;64:373–81.

    Article  PubMed  CAS  Google Scholar 

  8. Ratnakumari L, Vysotskaya TN, Duch DS, Hemmings HC Jr. Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels. Anesthesiology. 2000;92:529–41.

    Article  PubMed  CAS  Google Scholar 

  9. Herold KF, Nau C, Ouyang W, Hemmings HC Jr. Isoflurane inhibits the tetrodotoxin-resistant voltage-gated sodium channel Nav1.8. Anesthesiology. 2009;111:591–9.

    Article  PubMed  CAS  Google Scholar 

  10. Shiraishi M, Harris RA. Effects of alcohols and anesthetics on recombinant voltage-gated Na+ channels. J Pharmacol Exp Ther. 2004;309:987–94.

    Article  PubMed  CAS  Google Scholar 

  11. Hemmings HC Jr. Sodium channels and the synaptic mechanisms of inhaled anaesthetics. Br J Anaesth. 2009;103:61–9.

    Article  PubMed  CAS  Google Scholar 

  12. Ouyang W, Herold KF, Hemmings HC Jr. Comparative effects of halogenated inhaled anesthetics on voltage-gated Na+ channel function. Anesthesiology. 2009;110:582–90.

    Article  PubMed  CAS  Google Scholar 

  13. Akopian AN, Sivilotti L, Wood JN. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature. 1996;379:257–62.

    Article  PubMed  CAS  Google Scholar 

  14. Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN. The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol. 2003;550:739–52.

    Article  PubMed  CAS  Google Scholar 

  15. Gold MS, Weinreich D, Kim CS, Wang R, Treanor J, Porreca F, Lai J. Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci. 2003;23:158–66.

    PubMed  CAS  Google Scholar 

  16. Horishita T, Eger EI 2nd, Harris RA. The effects of volatile aromatic anesthetics on voltage-gated Na+ channels expressed in Xenopus oocytes. Anesth Analg. 2008;107:1579–86.

    Article  PubMed  CAS  Google Scholar 

  17. Horishita T, Harris RA. n-Alcohols inhibit voltage-gated Na+ channels expressed in Xenopus oocytes. J Pharmacol Exp Ther. 2008;326:270–7.

    Article  PubMed  CAS  Google Scholar 

  18. Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, Duhamel L, Charon D, Kirilovsky J. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991;266:15771–81.

    PubMed  CAS  Google Scholar 

  19. Minami K, Minami M, Harris RA. Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by n-alcohols and anesthetics. J Pharmacol Exp Ther. 1997;281(3):1136–43.

    PubMed  CAS  Google Scholar 

  20. Minami K, Gereau RW IV, Minami M, Heinemann SF, Harris RA. Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol Pharmacol. 1998;53:148–56.

    PubMed  CAS  Google Scholar 

  21. Frink EJ Jr, Malan TP, Atlas M, Dominguez LM, DiNardo JA, Brown BR Jr. Clinical comparison of sevoflurane and isoflurane in healthy patients. Anesth Analg. 1992;74:241–5.

    Article  PubMed  Google Scholar 

  22. Holaday DA, Smith FR. Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology. 1981;54:100–6.

    Article  PubMed  CAS  Google Scholar 

  23. Costa MR, Catterall WA. Phosphorylation of the alpha subunit of the sodium channel by protein kinase C. Cell Mol Neurobiol. 1984;4:291–7.

    Article  PubMed  CAS  Google Scholar 

  24. Vijayaragavan K, Boutjdir M, Chahine M. Modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J Neurophysiol. 2004;91:1556–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research on Scientific Research (C) No. 20602019 and No. 23590282 (T. Y.), No. 23592263 (J. O.) and No. 23592264 (K. M.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichiro Minami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

540_2011_1167_MOESM1_ESM.pptx

Supplemental Fig. 1. The protein kinase C pathway did not affect voltage-gated sodium channels. a Representative examples of the comparison of the pretreatment of bisindolylmaleimide I (GF109203X) and basal condition on Nav 1.8, Nav 1.4, and Nav 1.7. b Summary data for the pretreatment of GF109203X on peak inward current of voltage-gated sodium channels (Nav 1.8, Nav 1.4, and Nav 1.7.). The effects were expressed as rate of change (± SEM). (PPTX 178 kb)

About this article

Cite this article

Yokoyama, T., Minami, K., Sudo, Y. et al. Effects of sevoflurane on voltage-gated sodium channel Nav1.8, Nav1.7, and Nav1.4 expressed in Xenopus oocytes. J Anesth 25, 609–613 (2011). https://doi.org/10.1007/s00540-011-1167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-011-1167-7

Keywords

Navigation