Skip to main content

Advertisement

Log in

A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Hyperphosphorylation and aggregation of tau into tangles is a feature of disorders such as Alzheimer’s disease and other Tauopathies. To model these disorders in Drosophila melanogaster, human tau has been over-expressed and a variety of phenotypes have been observed including neurotoxicity, disrupted neuronal and synaptic function and locomotor impairments. Neuronal dysfunction has been seen prior to neuronal death and in the absence of tangle formation. The Drosophila tau protein shares a large degree of homology with human tau but differs in the crucial microtubule binding domains. Although like human tau Drosophila tau can induce neurotoxicity, little is known about its ability to disrupt neuronal function. In this study we demonstrate that like human tau, over-expression of Drosophila tau results in disrupted axonal transport, altered neuromuscular junction morphology and locomotor impairments. This indicates that like human tau, over-expression of Drosophila tau compromises neuronal function despite significant differences in microtubule binding regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323(Pt 3):577–591

    PubMed  CAS  Google Scholar 

  • Blard 0, Feuillette S, Bou J, Chaumette B, Frebourg T, Campion D, Lecourtois M (2007) Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet 16(5):555–566

    Article  PubMed  CAS  Google Scholar 

  • Brandt R, Hundelt M, Shahani N (2005) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta 1739:331–354

    PubMed  CAS  Google Scholar 

  • Chee F, Mudher A, Newman TA, Cuttle M, Lovestone S, Shepherd D (2005) Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol Dis 20(3):918–928

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Li Y, Huang J, Cao D, Yang G, Liu W, Lu H, Guo A (2007) Study of tauopathies by comparing Drosophila and human tau in Drosophila. Cell Tissue Res 329(1):169–178

    Article  PubMed  CAS  Google Scholar 

  • Grammenoudi S, Kosmidis S, Skoulakis EM (2006) Cell type-specific processing of human Tau proteins in Drosophila. FEBS Lett 580(19):4602–4606

    Article  PubMed  CAS  Google Scholar 

  • Goedert M (2005) Tau gene mutations and their effects. Mov Disord 20(Suppl 12):S45–S52

    Article  PubMed  Google Scholar 

  • Gotz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F (2004) Transgenic animal models of Alzheimer’s disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 9:664–683

    PubMed  CAS  Google Scholar 

  • Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnornxal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9(2):139–148

    Article  PubMed  CAS  Google Scholar 

  • Heidary G, Fortini ME (2001) Identification and characterization of the Drosophila tau homolog. Mech Dev 108:171–178

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT, Augustinack JC, Ingelsson M (2005) Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease. Biochim Biophys Acta 1739:150–157

    PubMed  CAS  Google Scholar 

  • Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li B, Liu F, Rahman A, Tanimukai H, Grundke-Iqbal I (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198–210

    PubMed  CAS  Google Scholar 

  • Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34:509–519

    Article  PubMed  CAS  Google Scholar 

  • Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268:24374–24384

    PubMed  CAS  Google Scholar 

  • Lovestone S, Reynolds CH (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78:309–324

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24:1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Mershin A, Pavlopoulos E, Fitch O, Braden BC, Nanopoulos DV, Skoulakis EM (2004) Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons. Learn Mem 11:277–287

    Article  PubMed  Google Scholar 

  • Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A, Mears A, Drummond JA, Berg S, MacKay D, Asuni AA, Bhat R, Lovestone S (2004) GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9:522–530

    Article  PubMed  CAS  Google Scholar 

  • Nishimura I, Yang Y, Lu B (2004) PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116:671–682

    Article  PubMed  CAS  Google Scholar 

  • Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281:25457–25465

    Article  PubMed  CAS  Google Scholar 

  • Shahani N, Brandt R (2002) Functions and malfunctions of the tau proteins. Cell Mol Life Sci 59:1668–1680

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Bird TD, Ghetti B (1998) Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 8:387–402

    Article  PubMed  CAS  Google Scholar 

  • Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739:280–297

    PubMed  CAS  Google Scholar 

  • Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F (2005) Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 280:3963–3973

    Article  PubMed  CAS  Google Scholar 

  • von Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E (2005) Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta 1739:158–166

    Google Scholar 

  • Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293:711–714

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee EB, Xie SX, Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski JQ (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102:227–231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Alzheimer’s Society, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amritpal Mudher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ubhi, K.K., Shaibah, H., Newman, T.A. et al. A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies. Invert Neurosci 7, 165–171 (2007). https://doi.org/10.1007/s10158-007-0052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-007-0052-4

Keywords

Navigation