Skip to main content

Advertisement

Log in

Fibronectins in vascular morphogenesis

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Fibronectin is an extracellular matrix protein found only in vertebrate organisms containing endothelium-lined vasculature and is required for cardiovascular development in fish and mice. Fibronectin and its splice variants containing EIIIA and EIIIB domains are highly upregulated around newly developing vasculature during embryogenesis and in pathological conditions including atherosclerosis, cardiac hypertrophy, and tumorigenesis. However, their molecular roles in these processes are not entirely understood. We review genetic studies examining functions of fibronectin and its splice variants during embryonic cardiovascular development, and discuss potential roles of fibronectin in vascular disease and tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Coultas L et al (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945

    PubMed  CAS  Google Scholar 

  2. Hodivala-Dilke K (2008) Alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 20:514–519

    PubMed  CAS  Google Scholar 

  3. Hynes RO (2007) Cell-matrix adhesion in vascular development. J Thromb Haemost 5(Suppl 1):32–40

    PubMed  CAS  Google Scholar 

  4. Armulik A et al (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    PubMed  CAS  Google Scholar 

  5. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464

    PubMed  CAS  Google Scholar 

  6. von Tell D et al (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629

    Google Scholar 

  7. George EL et al (1997) Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 90:3073–3081

    PubMed  CAS  Google Scholar 

  8. George EL et al (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    PubMed  CAS  Google Scholar 

  9. Georges-Labouesse EN et al (1996) Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207:145–156

    PubMed  CAS  Google Scholar 

  10. Francis SE et al (2002) Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22:927–933

    PubMed  CAS  Google Scholar 

  11. Lucitti JL et al (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134:3317–3326

    PubMed  CAS  Google Scholar 

  12. Astrof S et al (2007) Heart development in fibronectin-null mice is governed by a genetic modifier on chromosome four. Mech Dev 124:551–558

    PubMed  CAS  Google Scholar 

  13. Trinh LA, Stainier DY (2004) Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell 6:371–382

    PubMed  CAS  Google Scholar 

  14. Koshida S et al (2005) Integrinalpha5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. Dev Cell 8:587–598

    PubMed  CAS  Google Scholar 

  15. Marsden M, DeSimone DW (2001) Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development 128:3635–3647

    PubMed  CAS  Google Scholar 

  16. Katsuno T et al (2008) Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell 19:2465–2475

    PubMed  CAS  Google Scholar 

  17. Ikenouchi J et al (2007) Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization. J Cell Biol 176:779–786

    PubMed  CAS  Google Scholar 

  18. Umeda K et al (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754

    PubMed  CAS  Google Scholar 

  19. Buchner DA et al (2007) Pak2a mutations cause cerebral hemorrhage in redhead zebrafish. Proc Natl Acad Sci U S A 104:13996–14001

    PubMed  CAS  Google Scholar 

  20. Kamei M et al (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    PubMed  CAS  Google Scholar 

  21. Koh W et al (2008) Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci 121:989–1001

    PubMed  CAS  Google Scholar 

  22. Giancotti FG, Tarone G (2003) Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol 19:173–206

    PubMed  CAS  Google Scholar 

  23. Hynes RO et al (2002) The diverse roles of integrins and their ligands in angiogenesis. Cold Spring Harb Symp Quant Biol 67:143–153

    PubMed  CAS  Google Scholar 

  24. Yang JT, Hynes RO (1996) Fibronectin receptor functions in embryonic cells deficient in alpha 5 beta 1 integrin can be replaced by alpha V integrins. Mol Biol Cell 7:1737–1748

    PubMed  CAS  Google Scholar 

  25. Taverna D, Hynes RO (2001) Reduced blood vessel formation and tumor growth in alpha5-integrin-negative teratocarcinomas and embryoid bodies. Cancer Res 61:5255–5261

    PubMed  CAS  Google Scholar 

  26. Aota S et al (1994) The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269:24756–24761

    PubMed  CAS  Google Scholar 

  27. Hynes RO (1990) Fibronectins. Springer-Verlag, New York

    Google Scholar 

  28. Takahashi S et al (2007) The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 178:167–178

    PubMed  CAS  Google Scholar 

  29. Bader BL et al (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95:507–519

    PubMed  CAS  Google Scholar 

  30. Grazioli A et al (2006) Defective blood vessel development and pericyte/pvSMC distribution in alpha 4 integrin-deficient mouse embryos. Dev Biol 293:165–177

    PubMed  CAS  Google Scholar 

  31. Wijelath ES et al (2002) Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 91:25–31

    PubMed  CAS  Google Scholar 

  32. Wijelath ES et al (2006) Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res 99:853–860

    PubMed  CAS  Google Scholar 

  33. Lee S et al (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169:681–691

    PubMed  CAS  Google Scholar 

  34. Carmeliet P et al (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5:495–502

    PubMed  CAS  Google Scholar 

  35. Maes C et al (2004) Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Invest 113:188–199

    PubMed  CAS  Google Scholar 

  36. Zhou X et al (2008) Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev 22:1231–1243

    PubMed  CAS  Google Scholar 

  37. Bayless et al (2000) RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol 156:1673–1683

    PubMed  CAS  Google Scholar 

  38. McCarty JH et al (2002) Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol 22:7667–7677

    PubMed  CAS  Google Scholar 

  39. Yang JT et al (1999) Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development. Dev Biol 215:264–277

    PubMed  CAS  Google Scholar 

  40. Carlson TR et al (2008) Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion migration and survival during angiogenesis in mice. Development 135:2193–2202

    PubMed  CAS  Google Scholar 

  41. Wierzbicka-Patynowski I, Schwarzbauer JE (2003) The ins and outs of fibronectin matrix assembly. J Cell Sci 116:3269–3276

    PubMed  CAS  Google Scholar 

  42. White ES et al (2008) New insights into form and function of fibronectin splice variants. J Pathol 216:1–14

    PubMed  CAS  Google Scholar 

  43. Astrof S et al (2007) Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Dev Biol 311:11–24

    PubMed  CAS  Google Scholar 

  44. Dickson MC et al (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845–1854

    PubMed  CAS  Google Scholar 

  45. Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    PubMed  CAS  Google Scholar 

  46. Lee SH et al (2000) Maintenance of vascular integrity in the embryo requires signaling through the fibroblast growth factor receptor. J Biol Chem 275:33679–33687

    PubMed  CAS  Google Scholar 

  47. Suri C et al (1996) Requisite role of angiopoietin–1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    PubMed  CAS  Google Scholar 

  48. Miyamoto S et al (1996) Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135:1633–1642

    PubMed  CAS  Google Scholar 

  49. Reinhart-King CA et al (2005) The dynamics and mechanics of endothelial cell spreading. Biophys J 89:676–689

    PubMed  CAS  Google Scholar 

  50. Davidson LA et al (2008) Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev Dyn 237:2684–2692

    PubMed  Google Scholar 

  51. Erickson HP (1994) Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci U S A 91:10114–10118

    PubMed  CAS  Google Scholar 

  52. Liao YF et al (2002) The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem 277:14467–14474

    PubMed  CAS  Google Scholar 

  53. Okamura Y et al (2001) The extra domain A of fibronectin activates toll-like receptor 4. J Biol Chem 276:10229–10233

    PubMed  CAS  Google Scholar 

  54. Shinde AV et al (2008) Identification of the peptide sequences within the EIIIA (EDA) segment of fibronectin that mediate integrin alpha9beta1-dependent cellular activities. J Biol Chem 283:2858–2870

    PubMed  CAS  Google Scholar 

  55. Huang XZ et al (2000) Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol Cell Biol 20:5208–5215

    PubMed  CAS  Google Scholar 

  56. Li S et al (2003) The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc Natl Acad Sci U S A 100:9366–9370

    PubMed  CAS  Google Scholar 

  57. Serini G et al (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881

    PubMed  CAS  Google Scholar 

  58. High FA et al (2007) An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. J Clin Invest 117:353–363

    PubMed  CAS  Google Scholar 

  59. Hirschi et al (2003) Gap junction communication mediates transforming growth factor-{beta} activation and endothelial-induced mural cell differentiation. Circ Res 93:429–437

    PubMed  CAS  Google Scholar 

  60. Wurdak H et al (2005) Inactivation of TGF{beta} signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Genes Dev 19:530–535

    PubMed  CAS  Google Scholar 

  61. Lindblom P et al (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840

    PubMed  CAS  Google Scholar 

  62. Abramsson A et al (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151

    PubMed  CAS  Google Scholar 

  63. Hellstrom M et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  CAS  Google Scholar 

  64. Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27:1248–1258

    PubMed  CAS  Google Scholar 

  65. Esner M et al (2006) Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development 133:737–749

    PubMed  CAS  Google Scholar 

  66. Snider P et al (2007) Cardiovascular development and the colonizing cardiac neural crest lineage. Scientific World J 7:1090–1113

    CAS  Google Scholar 

  67. Ffrench-Constant C, Hynes RO (1988) Patterns of fibronectin gene expression and splicing during cell migration in chicken embryos. Development 104:369–382

    PubMed  CAS  Google Scholar 

  68. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    PubMed  CAS  Google Scholar 

  69. Cascone I et al (2005) Stable interaction between alpha5beta1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang–1. J Cell Biol 170:993–1004

    PubMed  CAS  Google Scholar 

  70. Sheppard J et al (1994) Expanding roles for alpha 4 integrin and its ligands in development. Cell Adhes Commun 2:27–43

    PubMed  CAS  Google Scholar 

  71. Vlahakis NE et al (2005) The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem 280:4544–4552

    PubMed  CAS  Google Scholar 

  72. Bergers G et al (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812

    PubMed  CAS  Google Scholar 

  73. Bergers G et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    PubMed  CAS  Google Scholar 

  74. Morikawa S et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000

    PubMed  Google Scholar 

  75. Benjamin LE, Keshet E (1997) Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA 94:8761–8766

    PubMed  CAS  Google Scholar 

  76. Sennino B et al (2007) Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 67:7358–7367

    PubMed  CAS  Google Scholar 

  77. Owens GK et al (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    PubMed  CAS  Google Scholar 

  78. Dzau VJ et al (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8:1249–1256

    PubMed  CAS  Google Scholar 

  79. Glukhova MA et al (1989) Expression of extra domain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. J Cell Biol 109:357–366

    PubMed  CAS  Google Scholar 

  80. Rosamond W et al (2007) Heart disease and stroke statistics-2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171

    PubMed  Google Scholar 

  81. Babaev VR et al (2008) Absence of regulated splicing of fibronectin EDA exon reduces atherosclerosis in mice. Atherosclerosis 197:534–540

    PubMed  CAS  Google Scholar 

  82. Tan MH et al (2004) Deletion of the alternatively spliced fibronectin EIIIA domain in mice reduces atherosclerosis. Blood 104:11–18

    PubMed  CAS  Google Scholar 

  83. Dangas G, Kuepper F (2002) Cardiology patient page. Restenosis: repeat narrowing of a coronary artery: prevention and treatment. Circulation 105:2586–2587

    PubMed  Google Scholar 

  84. Dubin D et al (1995) Balloon catheterization induces arterial expression of embryonic fibronectins. Arterioscler Thromb Vasc Biol 15:1958–1967

    PubMed  CAS  Google Scholar 

  85. Samuel JL et al (1991) Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest 88:1737–1746

    PubMed  CAS  Google Scholar 

  86. Coito AJ et al (1997) Expression of fibronectin splicing variants in organ transplantation: a differential pattern between rat cardiac allografts and isografts. Am J Pathol 150:1757–1772

    PubMed  CAS  Google Scholar 

  87. Cai CL et al (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–108

    PubMed  CAS  Google Scholar 

  88. Zhou B et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    PubMed  CAS  Google Scholar 

  89. Lepilina A et al (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:607–619

    PubMed  CAS  Google Scholar 

  90. Castellani P et al (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59:612–618

    PubMed  CAS  Google Scholar 

  91. Castellani P et al (2002) Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol 161:1695–1700

    PubMed  CAS  Google Scholar 

  92. D’Ovidio MC et al (1998) Intratumoral microvessel density and expression of ED-A/ED-B sequences of fibronectin in breast carcinoma. Eur J Cancer 34:1081–1085

    PubMed  Google Scholar 

  93. Inufusa H et al (1995) Localization of oncofetal and normal fibronectin in colorectal cancer. Correlation with histologic grade, liver metastasis, and prognosis. Cancer 75:2802–2808

    PubMed  CAS  Google Scholar 

  94. Kaczmarek J et al (1994) Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer 59:11–16

    PubMed  CAS  Google Scholar 

  95. Lohi J et al (1995) Tenascin and fibronectin isoforms in human renal cell carcinomas, renal cell carcinoma cell lines and xenografts in nude mice. Int J Cancer 63:442–449

    PubMed  CAS  Google Scholar 

  96. Kosmehl H et al (1999) Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer 81:1071–1079

    PubMed  CAS  Google Scholar 

  97. Matsumoto E et al (1999) Expression of fibronectin isoforms in human breast tissue: production of extra domain A +/extra domain B + by cancer cells and extra domain A + by stromal cell. Jap J Cancer Res 90:320–325

    CAS  Google Scholar 

  98. Oyama F et al (1989) Deregulation of alternative splicing of fibronectin pre-mRNA in malignant human liver tumors. J Biol Chem 264:10331–10334

    PubMed  CAS  Google Scholar 

  99. Oyama F et al (1990) Oncodevelopmental regulation of the alternative splicing of fibronectin pre-messenger RNA in human lung tissues. Cancer Res 50:1075–1078

    PubMed  CAS  Google Scholar 

  100. Pujuguet P et al (1996) Expression of fibronectin ED-A + and ED-B + isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor-associated myofibroblasts. Am J Pathol 148:579–592

    PubMed  CAS  Google Scholar 

  101. Scarpino S et al (1999) Expression of EDA/EDB isoforms of fibronectin in papillary carcinoma of the thyroid. J Pathol 188:163–167

    PubMed  CAS  Google Scholar 

  102. Ohnishi T et al (1998) Role of fibronectin-stimulated tumor cell migration in glioma invasion in vivo: clinical significance of fibronectin and fibronectin receptor expressed in human glioma tissues. Clin Exp Metastasis 16:729–741

    PubMed  CAS  Google Scholar 

  103. Astrof S et al (2004) Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol Cell Biol 24:8662–8670

    PubMed  CAS  Google Scholar 

  104. Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90

    PubMed  Google Scholar 

  105. Borsi L et al (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102:75–85

    PubMed  CAS  Google Scholar 

  106. Nilsson F et al (2001) Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res 61:711–716

    PubMed  CAS  Google Scholar 

  107. Kaspar M et al (2006) Fibronectin as target for tumor therapy. Int J Cancer 118:1331–1339

    PubMed  CAS  Google Scholar 

  108. Villa A et al (2008) A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer 122:2405–2413

    PubMed  CAS  Google Scholar 

  109. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    PubMed  CAS  Google Scholar 

  110. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    PubMed  CAS  Google Scholar 

  111. Batchelor TT et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SA is supported by the Scientist Development grant from the American Heart Association, # 0835556D. Work in the laboratory of ROH is supported by the Howard Hughes Medical Institute and by a grant from the National Heart Lung and Blood Institute (PO1-HL66105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sophie Astrof or Richard O. Hynes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astrof, S., Hynes, R.O. Fibronectins in vascular morphogenesis. Angiogenesis 12, 165–175 (2009). https://doi.org/10.1007/s10456-009-9136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-009-9136-6

Keywords

Navigation